Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

Overview

DeepCurrents | Webpage | Paper

DeepCurrents

DeepCurrents: Learning Implicit Representations of Shapes with Boundaries
David Palmer*, Dmitriy Smirnov*, Stephanie Wang, Albert Chern, Justin Solomon

Set-up

To install the neecssary dependencies, run:

conda env create -f environment.yml
conda activate DeepCurrents

Training

To prepare the training dataset, first download and extract the FAUST human body meshes:

wget -O faust.tar.gz https://www.dropbox.com/s/jgm6hfif6evpi2b/faust.tar.gz?dl=0
tar -xvf faust.tar.gz

Then, preprocess the mesh segmentations:

./scripts/generate_data.sh

To overfit to a single mesh, run:

python scripts/train_reconstruction.py --data data/category --idx i --out out_dir

You should specify one of heads, torsos, arms, forearms, hands, or feet as category, and indicate an index between 0 and 99 as i to pick a mesh from the dataset.

To learn a minimal serfice, run:

python scripts/train_minimal.py --boundary boundary_config --idx i --out out_dir

Specify the boundary configuration boundary_config as either hopf, borromean, or trefoil.

To train a latent model, run:

python scripts/train_latent.py --data data/category --out out_dir

You should specify one of heads, torsos, arms, forearms, hands, or feet as category.

To monitor the training, launch a TensorBoard instance with --logdir out_dir.

Visualization

To render a turntable GIF from an overfit reconstruction or minimal surface model, run:

python scripts/render_current.py --infile out/model/it.pth --outfile out.gif

out/model/it.pth should be the checkpoint of a trained model.

To render a linear interpolation in boundary or latent space, run:

python scripts/render_interpolation.py --infile out/model/it.pth --outfile out.gif --data data/category --interpolation_type interpolation_type

out/model/it.pth should be the checkpoint of a trained model, and data/category the directory to the dataset used to train the model. You can choose between latent or boundary as the interpolation_type.

BibTeX

@article{palmer2021deepcurrents,
  title={{DeepCurrents}: Learning Implicit Representations of Shapes with Boundaries,
  author={Palmer, David and Smirnov, Dmitriy and Wang, Stephanie and Chern, Albert and Solomon, Justin},
  journal={arXiv:2111.09383},
  year={2021},
}
Owner
Dima Smirnov
PhD Student @ MIT CSAIL
Dima Smirnov
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
Continual World is a benchmark for continual reinforcement learning

Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th

41 Dec 24, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022