Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

Related tags

Deep Learningisvd
Overview

isvd

Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

If you find this code useful, you may cite us as:

@inproceedings{haija2021isvd,
  author={Sami Abu-El-Haija AND Hesham Mostafa AND Marcel Nassar AND Valentino Crespi AND Greg Ver Steeg AND Aram Galstyan},
  title={Implicit SVD for Graph Representation Learning},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021},
}

To run link prediction on Stanford SNAP and node2vec datasets:

To embed with rank-32 SVD:

python3 run_snap_linkpred.py --dataset_name=ppi --dim=32
python3 run_snap_linkpred.py --dataset_name=ca-AstroPh --dim=32
python3 run_snap_linkpred.py --dataset_name=ca-HepTh --dim=32
python3 run_snap_linkpred.py --dataset_name=soc-facebook --dim=32

To embed with rank 256 on half of the training edges, determine "best rank" based on the remaining half, then re-run sVD with the best rank on all of training: (note: negative dim causes this logic):

python3 run_snap_linkpred.py --dataset_name=ppi --dim=-256
python3 run_snap_linkpred.py --dataset_name=ca-AstroPh --dim=-256
python3 run_snap_linkpred.py --dataset_name=ca-HepTh --dim=-256
python3 run_snap_linkpred.py --dataset_name=soc-facebook --dim=-256

To run semi-supervised node classification on Planetoid datasets

You must first download the planetoid dataset as:

mkdir -p ~/data
cd ~/data
git clone [email protected]:kimiyoung/planetoid.git

Afterwards, you may navigate back to this directory and run our code as:

python3 run_planetoid.py --dataset=ind.citeseer
python3 run_planetoid.py --dataset=ind.cora
python3 run_planetoid.py --dataset=ind.pubmed

To run link prediction on Stanford OGB DDI

python3 ogb_linkpred_sing_val_net.py

Note the above will download the dataset from Stanford. If you already have it, you may symlink it into directory dataset

To run link prediction on Stanford OGB ArXiv

As our code imports gttf, you must first clone it onto the repo:

git clone [email protected]:isi-usc-edu/gttf.git

Afterwards, you may run as:

python3 final_obgn_mixed_device.py --funetune_device='gpu:0'

Note the above will download the dataset from Stanford. If you already have it, you may symlink it into directory dataset. You may skip the finetune_device argument if you do not have a GPU installed.

Owner
Sami Abu-El-Haija
Sami Abu-El-Haija
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023