A python library for face detection and features extraction based on mediapipe library

Overview

FaceAnalyzer

A python library for face detection and features extraction based on mediapipe library

Introduction

FaceAnalyzer is a library based on mediapipe library and is provided under MIT Licence. It provides an object oriented tool to play around with faces. It can be used to :

  1. Extract faces from an image
  2. Measure the face position and orientation
  3. Measure eyes openings
  4. Detect blinks
  5. Extract the face from an image (useful for face learning applications)
  6. Compute face triangulation (builds triangular surfaces that can be used to build 3D models of the face)
  7. Copy a face from an image to another.

Requirements

This library requires :

  1. mediapipe (used for facial landmarks extraction)
  2. opencv used for drawing and image morphing
  3. scipy used for efficient delaulay triangulation
  4. numpy, as any thing that uses math

How to install

Just install from pipy.

pip install FaceAnalyzer

Make sure you upgrade the library from time to time as I am adding new features so frequently those days.

pip install FaceAnalyzer --upgrade

How to use

# Import the two main classes FaceAnalyzer and Face 
from FaceAnalyzer import FaceAnalyzer, Face

fa = FaceAnalyzer()
# ... Recover an image in RGB format as numpy array (you can use pillow opencv but if you use opencv make sure you change the color space from BGR to RGB)
# Now process the image
fa.process(image)

# Now you can find faces in fa.faces which is a list of instances of object Face
if fa.nb_faces>0:
    print(f"{fa.nb_faces} Faces found")
    # We can get the landmarks in numpy format NX3 where N is the number of the landmarks and 3 is x,y,z coordinates 
    print(fa.faces[0].npLandmarks)
    # We can draw all landmarks
    # Get head position and orientation compared to the reference pose (here the first frame will define the orientation 0,0,0)
    pos, ori = fa.faces[0].get_head_posture(orientation_style=1)

Make sure you look at the examples folder in the repository for more details.

Structure

The library is structured as follow:

  • Helpers : A module containing Helper functions, namely geometric transformation between rotation formats, or generation of camera matrix etc
  • FaceAnalyzer : A module to process images and extract faces
  • Face : The main module that represents a face. Allows doing multiple operations such as copying the face and put it on another one or estimate eye opening, head position/orientation in space etc.

Examples

face_mesh :

A basic simple example of how to use webcam to get video and process each frame to extract faces and draw face landmarks on the face.

from_image :

A basic simple example of how to extract faces from an image file.

eye_process :

An example of how to extract faces from a video (using webcam) then process eyes and return eyes openings as well as detecting blinks.

face_off :

An example of how to use webcam to switch faces between two persons.

face_mask :

An example of how to use webcam to put a mask on a face.

Owner
Saifeddine ALOUI
Research engeneer PHD in signal processing and robotics Machine learning expert
Saifeddine ALOUI
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022