PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Overview

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG)

This repository contains a PyTorch implementation of the paper Convolutional Networks with Adaptive Inference Graphs presented at ECCV 2018.

The code is based on the PyTorch example for training ResNet on Imagenet.

Table of Contents

  1. Introduction
  2. Usage
  3. Citing
  4. Requirements
  5. Contact

Introduction

Do convolutional networks really need a fixed feed-forward structure? What if, after identifying the high-level concept of an image, a network could move directly to a layer that can distinguish fine-grained differences? Currently, a network would first need to execute sometimes hundreds of intermediate layers that specialize in unrelated aspects. Ideally, the more a network already knows about an image, the better it should be at deciding which layer to compute next.

Convolutional networks with adaptive inference graphs (ConvNet-AIG) can adaptively define their network topology conditioned on the input image. Following a high-level structure similar to residual networks (ResNets), ConvNet-AIG decides for each input image on the fly which layers are needed. In experiments on ImageNet we show that ConvNet-AIG learns distinct inference graphs for different categories.

Usage

There are two training files. One for CIFAR-10 train.py and one for ImageNet train_img.py.

The network can be simply trained with python train.py or with optional arguments for different hyperparameters:

$ python train.py --expname {your experiment name}

For ImageNet the folder containing the dataset needs to be supplied

$ python train_img.py --expname {your experiment name} [imagenet-folder with train and val folders]

Training progress can be easily tracked with visdom using the --visdom flag. It keeps track of the learning rate, loss, training and validation accuracy as well as the activation rates of the gates for each class.

By default the training code keeps track of the model with the highest performance on the validation set. Thus, after the model has converged, it can be directly evaluated on the test set as follows

$ python train.py --test --resume runs/{your experiment name}/model_best.pth.tar

Requirements

This implementation is developed for

  1. Python 3.6.5
  2. PyTorch 0.3.1
  3. CUDA 9.1

Target Rate schedules

To improve performance and memory efficiency, the target rates of early, last and downsampling layers can be fixed so as to always execute the layers. Specifically, for the results in the paper the following target rate schedules are used for ResNet 50: [1, 1, 0.8, 1, t, t, t, 1, t, t, t, t, t, 1, 0.7, 1] for t in [0.4, 0.5, 0.6, 0.7] For ResNet 101 the following rates can be used: ([1]* 8).extend([t] * 25) for t in [0.3, 0.5]

For compatibility to newer versions, please make a pull request.

Citing

If you find this helps your research, please consider citing:

@conference{Veit2018,
title = {Convolutional Networks with Adaptive Inference Graphs},
author = {Andreas Veit and Serge Belongie},
year = {2018},
journal = {European Conference on Computer Vision (ECCV)},
}

Contact

andreas at cs dot cornell dot edu

Owner
Andreas Veit
Research Scientist at Google Research in New York City
Andreas Veit
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022