Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Overview

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals

This repo contains the Pytorch implementation of our paper:

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, and Luc Van Gool.

PWC

Contents

  1. Introduction
  2. Installation
  3. Training
  4. Evaluation
  5. Model Zoo
  6. Citation

Introduction

Being able to learn dense semantic representations of images without supervision is an important problem in computer vision. However, despite its significance, this problem remains rather unexplored, with a few exceptions that considered unsupervised semantic segmentation on small-scale datasets with a narrow visual domain. We make a first attempt to tackle the problem on datasets that have been traditionally utilized for the supervised case (e.g. PASCAL VOC). To achieve this, we introduce a novel two-step framework that adopts a predetermined prior in a contrastive optimization objective to learn pixel embeddings. Additionally, we argue about the importance of having a prior that contains information about objects, or their parts, and discuss several possibilities to obtain such a prior in an unsupervised manner. In particular, we adopt a mid-level visual prior to group pixels together and contrast the obtained object mask porposals. For this reason we name the method MaskContrast.

Installation

The Python code runs with recent Pytorch versions, e.g. 1.4. Assuming Anaconda, the most important packages can be installed as:

conda install pytorch=1.4.0 torchvision=0.5.0 cudatoolkit=10.0 -c pytorch
conda install -c conda-forge opencv           # For image transformations
conda install matplotlib scipy scikit-learn   # For evaluation
conda install pyyaml easydict                 # For using config files
conda install termcolor                       # For colored print statements

We refer to the requirements.txt file for an overview of the packages in the environment we used to produce our results. The code was run on 2 Tesla V100 GPUs.

Training MaskContrast

Setup

The PASCAL VOC dataset will be downloaded automatically when running the code for the first time. The dataset includes the precomputed supervised and unsupervised saliency masks, following the implementation from the paper.

The following files (in the pretrain/ and segmentation/ directories) need to be adapted in order to run the code on your own machine:

  • Change the file path for the datasets in data/util/mypath.py. The PASCAL VOC dataset will be saved to this path.
  • Specify the output directory in configs/env.yml. All results will be stored under this directory.

Pre-train model

The training procedure consists of two steps. First, pixels are grouped together based upon a mid-level visual prior (saliency is used). Then, a pre-training strategy is proposed to contrast the pixel-embeddings of the obtained object masks. The code for the pre-training can be found in the pretrain/ directory and the configuration files are located in the pretrain/configs/ directory. You can choose to run the model with the masks from the supervised or unsupervised saliency model. For example, run the following command to perform the pre-training step on PASCAL VOC with the supervised saliency model:

cd pretrain
python main.py --config_env configs/env.yml --config_exp configs/VOCSegmentation_supervised_saliency_model.yml

Evaluation

Linear Classifier (LC)

We freeze the weights of the pre-trained model and train a 1 x 1 convolutional layer to predict the class assignments from the generated feature representations. Since the discriminative power of a linear classifier is low, the pixel embeddings need to be informative of the semantic class to solve the task in this way. To train the classifier run the following command:

cd segmentation
python linear_finetune.py --config_env configs/env.yml --config_exp configs/linear_finetune/linear_finetune_VOCSegmentation_supervised_saliency.yml

Note, make sure that the pretraining variable in linear_finetune_VOCSegmentation_supervised_saliency.yml points to the location of your pre-trained model. You should get the following results:

mIoU is 63.95
IoU class background is 90.95
IoU class aeroplane is 83.78
IoU class bicycle is 30.66
IoU class bird is 78.79
IoU class boat is 64.57
IoU class bottle is 67.31
IoU class bus is 84.24
IoU class car is 76.77
IoU class cat is 79.10
IoU class chair is 21.24
IoU class cow is 66.45
IoU class diningtable is 46.63
IoU class dog is 73.25
IoU class horse is 62.61
IoU class motorbike is 69.66
IoU class person is 72.30
IoU class pottedplant is 40.15
IoU class sheep is 74.70
IoU class sofa is 30.43
IoU class train is 74.67
IoU class tvmonitor is 54.66

Unsurprisingly, the model has not learned a good representation for every class since some classes are hard to distinguish, e.g. chair or sofa.

We visualize a few examples after CRF post-processing below.

Clustering (K-means)

The feature representations are clustered with K-means. If the pixel embeddings are disentangled according to the defined class labels, we can match the predicted clusters with the ground-truth classes using the Hungarian matching algorithm.

cd segmentation
python kmeans.py --config_env configs/env.yml --config_exp configs/kmeans/kmeans_VOCSegmentation_supervised_saliency_model.yml

Remarks: Note that we perform the complete K-means fitting on the validation set to save memory and that the reported results were averaged over 5 different runs. You should get the following results (21 clusters):

IoU class background is 88.17
IoU class aeroplane is 77.41
IoU class bicycle is 26.18
IoU class bird is 68.27
IoU class boat is 47.89
IoU class bottle is 56.99
IoU class bus is 80.63
IoU class car is 66.80
IoU class cat is 46.13
IoU class chair is 0.73
IoU class cow is 0.10
IoU class diningtable is 0.57
IoU class dog is 35.93
IoU class horse is 48.68
IoU class motorbike is 60.60
IoU class person is 32.24
IoU class pottedplant is 23.88
IoU class sheep is 36.76
IoU class sofa is 26.85
IoU class train is 69.90
IoU class tvmonitor is 27.56

Model Zoo

Download the pretrained and linear finetuned models here.

Dataset Pixel Grouping Prior mIoU (LC) mIoU (K-means) Download link
PASCAL VOC Supervised Saliency - 44.2 Pretrained Model 🔗
PASCAL VOC Supervised Saliency 63.9 (65.5*) 44.2 Linear Finetuned 🔗
PASCAL VOC Unsupervised Saliency - 35.0 Pretrained Model 🔗
PASCAL VOC Unsupervised Saliency 58.4 (59.5*) 35.0 Linear Finetuned 🔗

* Denotes CRF post-processing.

To evaluate and visualize the predictions of the finetuned model, run the following command:

cd segmentation
python eval.py --config_env configs/env.yml --config_exp configs/VOCSegmentation_supervised_saliency_model.yml --state-dict $PATH_TO_MODEL

You can optionally append the --crf-postprocess flag.

Citation

This code is based on the SCAN and MoCo repositories. If you find this repository useful for your research, please consider citing the following paper(s):

@article{vangansbeke2020unsupervised,
  title={Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals},
  author={Van Gansbeke, Wouter and Vandenhende, Simon and Georgoulis, Stamatios and Van Gool, Luc},
  journal={arxiv preprint arxiv:2102.06191},
  year={2021}
}
@inproceedings{vangansbeke2020scan,
  title={Scan: Learning to classify images without labels},
  author={Van Gansbeke, Wouter and Vandenhende, Simon and Georgoulis, Stamatios and Proesmans, Marc and Van Gool, Luc},
  booktitle={Proceedings of the European Conference on Computer Vision},
  year={2020}
}
@inproceedings{he2019moco,
  title={Momentum Contrast for Unsupervised Visual Representation Learning},
  author={Kaiming He and Haoqi Fan and Yuxin Wu and Saining Xie and Ross Girshick},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

For any enquiries, please contact the main authors.

For an overview on self-supervised learning, have a look at the overview repository.

License

This software is released under a creative commons license which allows for personal and research use only. For a commercial license please contact the authors. You can view a license summary here.

Acknoledgements

This work was supported by Toyota, and was carried out at the TRACE Lab at KU Leuven (Toyota Research on Automated Cars in Europe - Leuven).

Owner
Wouter Van Gansbeke
PhD researcher at KU Leuven. Especially interested in computer vision, machine learning and deep learning. Working on self-supervised and multi-task learning.
Wouter Van Gansbeke
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022