Unsupervised Learning of Video Representations using LSTMs

Overview

Unsupervised Learning of Video Representations using LSTMs

Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivastava, Elman Mansimov, Ruslan Salakhutdinov; ICML 2015.

We use multilayer Long Short Term Memory (LSTM) networks to learn representations of video sequences. The representation can be used to perform different tasks, such as reconstructing the input sequence, predicting the future sequence, or for classification. Examples:

mnist gif1 mnist gif2 ucf101 gif1 ucf101 gif2

Note that the code at this link is deprecated.

Getting Started

To compile cudamat library you need to modify CUDA_ROOT in cudamat/Makefile to the relevant cuda root path.

The libraries you need to install are:

  • h5py (HDF5 (>= 1.8.11))
  • google.protobuf (Protocol Buffers (>= 2.5.0))
  • numpy
  • matplotlib

Next compile .proto file by calling

protoc -I=./ --python_out=./ config.proto

Depending on the task, you would need to download the following dataset files. These can be obtained by running:

wget http://www.cs.toronto.edu/~emansim/datasets/mnist.h5
wget http://www.cs.toronto.edu/~emansim/datasets/bouncing_mnist_test.npy
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_patches.npy
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_patches.npy
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_features.h5
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_labels.txt
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_num_frames.txt
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_features.h5
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_labels.txt
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_num_frames.txt

Note to Toronto users: You don't need to download any files, as they are available in my gobi3 repository and are already set up.

Bouncing (Moving) MNIST dataset

To train a sample model on this dataset you need to set correct data_file in datasets/bouncing_mnist_valid.pbtxt and then run (you may need to change the board id of gpu):

python lstm_combo.py models/lstm_combo_1layer_mnist.pbtxt datasets/bouncing_mnist.pbtxt datasets/bouncing_mnist_valid.pbtxt 1

After training the model and setting correct path to trained weights in models/lstm_combo_1layer_mnist_pretrained.pbtxt, you can visualize the sample reconstruction and future prediction results of the pretrained model by running:

python display_results.py models/lstm_combo_1layer_mnist_pretrained.pbtxt datasets/bouncing_mnist_valid.pbtxt 1

Below are the sample results, where first image is reference image and second image is prediction of the model. Note that first ten frames are reconstructions, whereas the last ten frames are future predictions.

original recon

Video patches

Due to the size constraints, I only managed to upload a small sample dataset of UCF-101 patches. The trained model is overfitting, so this example is just meant for instructional purposes. The setup is the same as in Bouncing MNIST dataset.

To train the model run:

python lstm_combo.py models/lstm_combo_1layer_ucf101_patches.pbtxt datasets/ucf101_patches.pbtxt datasets/ucf101_patches_valid.pbtxt 1

To see the results run:

python display_results.py models/lstm_combo_1layer_ucf101_pretrained.pbtxt datasets/ucf101_patches_valid.pbtxt 1

original recon

Classification using high level representations ('percepts') of video frames

Again, as in the case of UCF-101 patches, I was able to upload a very small subset of fc6 features of video frames extracted using VGG network. To train the classifier run:

python lstm_classifier.py models/lstm_classifier_1layer_ucf101_features.pbtxt datasets/ucf101_features.pbtxt datasets/ucf101_features_valid.pbtxt 1

Reference

If you found this code or our paper useful, please consider citing the following paper:

@inproceedings{srivastava15_unsup_video,
  author    = {Nitish Srivastava and Elman Mansimov and Ruslan Salakhutdinov},
  title     = {Unsupervised Learning of Video Representations using {LSTM}s},
  booktitle = {ICML},
  year      = {2015}
}
Owner
Elman Mansimov
Applied Scientist @amazon-research
Elman Mansimov
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022