Unsupervised Learning of Video Representations using LSTMs

Overview

Unsupervised Learning of Video Representations using LSTMs

Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivastava, Elman Mansimov, Ruslan Salakhutdinov; ICML 2015.

We use multilayer Long Short Term Memory (LSTM) networks to learn representations of video sequences. The representation can be used to perform different tasks, such as reconstructing the input sequence, predicting the future sequence, or for classification. Examples:

mnist gif1 mnist gif2 ucf101 gif1 ucf101 gif2

Note that the code at this link is deprecated.

Getting Started

To compile cudamat library you need to modify CUDA_ROOT in cudamat/Makefile to the relevant cuda root path.

The libraries you need to install are:

  • h5py (HDF5 (>= 1.8.11))
  • google.protobuf (Protocol Buffers (>= 2.5.0))
  • numpy
  • matplotlib

Next compile .proto file by calling

protoc -I=./ --python_out=./ config.proto

Depending on the task, you would need to download the following dataset files. These can be obtained by running:

wget http://www.cs.toronto.edu/~emansim/datasets/mnist.h5
wget http://www.cs.toronto.edu/~emansim/datasets/bouncing_mnist_test.npy
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_patches.npy
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_patches.npy
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_features.h5
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_labels.txt
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_train_num_frames.txt
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_features.h5
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_labels.txt
wget http://www.cs.toronto.edu/~emansim/datasets/ucf101_sample_valid_num_frames.txt

Note to Toronto users: You don't need to download any files, as they are available in my gobi3 repository and are already set up.

Bouncing (Moving) MNIST dataset

To train a sample model on this dataset you need to set correct data_file in datasets/bouncing_mnist_valid.pbtxt and then run (you may need to change the board id of gpu):

python lstm_combo.py models/lstm_combo_1layer_mnist.pbtxt datasets/bouncing_mnist.pbtxt datasets/bouncing_mnist_valid.pbtxt 1

After training the model and setting correct path to trained weights in models/lstm_combo_1layer_mnist_pretrained.pbtxt, you can visualize the sample reconstruction and future prediction results of the pretrained model by running:

python display_results.py models/lstm_combo_1layer_mnist_pretrained.pbtxt datasets/bouncing_mnist_valid.pbtxt 1

Below are the sample results, where first image is reference image and second image is prediction of the model. Note that first ten frames are reconstructions, whereas the last ten frames are future predictions.

original recon

Video patches

Due to the size constraints, I only managed to upload a small sample dataset of UCF-101 patches. The trained model is overfitting, so this example is just meant for instructional purposes. The setup is the same as in Bouncing MNIST dataset.

To train the model run:

python lstm_combo.py models/lstm_combo_1layer_ucf101_patches.pbtxt datasets/ucf101_patches.pbtxt datasets/ucf101_patches_valid.pbtxt 1

To see the results run:

python display_results.py models/lstm_combo_1layer_ucf101_pretrained.pbtxt datasets/ucf101_patches_valid.pbtxt 1

original recon

Classification using high level representations ('percepts') of video frames

Again, as in the case of UCF-101 patches, I was able to upload a very small subset of fc6 features of video frames extracted using VGG network. To train the classifier run:

python lstm_classifier.py models/lstm_classifier_1layer_ucf101_features.pbtxt datasets/ucf101_features.pbtxt datasets/ucf101_features_valid.pbtxt 1

Reference

If you found this code or our paper useful, please consider citing the following paper:

@inproceedings{srivastava15_unsup_video,
  author    = {Nitish Srivastava and Elman Mansimov and Ruslan Salakhutdinov},
  title     = {Unsupervised Learning of Video Representations using {LSTM}s},
  booktitle = {ICML},
  year      = {2015}
}
Owner
Elman Mansimov
Applied Scientist @amazon-research
Elman Mansimov
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023