MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

Related tags

Deep LearningMAVE
Overview

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories created from 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attribute extraction study.

More details can be found in paper: https://arxiv.org/abs/2112.08663

The dataset is in JSON Lines format, where each line is a json object with the following schema:

, "category": , "paragraphs": [ { "text": , "source": }, ... ], "attributes": [ { "key": , "evidences": [ { "value": , "pid": , "begin": , "end": }, ... ] }, ... ] }">
{
   "id": 
           
            ,
   "category": 
            
             ,
   "paragraphs": [
      {
         "text": 
             
              ,
         "source": 
              
               
      },
      ...
   ],
   "attributes": [
      {
         "key": 
               
                , "evidences": [ { "value": 
                
                 , "pid": 
                 
                  , "begin": 
                  
                   , "end": 
                   
                     }, ... ] }, ... ] } 
                   
                  
                 
                
               
              
             
            
           

The product id is exactly the ASIN number in the All_Amazon_Meta.json file in the Amazon Review Data (2018). In this repo, we don't store paragraphs, instead we only store the labels. To obtain the full version of the dataset contaning the paragraphs, we suggest to first request the Amazon Review Data (2018), then run our binary to clean its product metadata and join with the labels as described below.

A json object contains a product and multiple attributes. A concrete example is shown as follows

{
   "id":"B0002H0A3S",
   "category":"Guitar Strings",
   "paragraphs":[
      {
         "text":"D'Addario EJ26 Phosphor Bronze Acoustic Guitar Strings, Custom Light, 11-52",
         "source":"title"
      },
      {
         "text":".011-.052 Custom Light Gauge Acoustic Guitar Strings, Phosphor Bronze",
         "source":"description"
      },
      ...
   ],
   "attributes":[
      {
         "key":"Core Material",
         "evidences":[
            {
               "value":"Bronze Acoustic",
               "pid":0,
               "begin":24,
               "end":39
            },
            ...
         ]
      },
      {
         "key":"Winding Material",
         "evidences":[
            {
               "value":"Phosphor Bronze",
               "pid":0,
               "begin":15,
               "end":30
            },
            ...
         ]
      },
      {
         "key":"Gauge",
         "evidences":[
            {
               "value":"Light",
               "pid":0,
               "begin":63,
               "end":68
            },
            {
               "value":"Light Gauge",
               "pid":1,
               "begin":17,
               "end":28
            },
            ...
         ]
      }
   ]
}

In addition to positive examples, we also provide a set of negative examples, i.e. (product, attribute name) pairs without any evidence. The overall statistics of the positive and negative sets are as follows

Counts Positives Negatives
# products 2226509 1248009
# product-attribute pairs 2987151 1780428
# products with 1-2 attributes 2102927 1140561
# products with 3-5 attributes 121897 99896
# products with >=6 attributes 1685 7552
# unique categories 1257 1114
# unique attributes 705 693
# unique category-attribute pairs 2535 2305

Creating the full version of the dataset

In this repo, we only open source the labels of the MAVE dataset and the code to deterministically clean the original Amazon product metadata in the Amazon Review Data (2018), and join with the labels to generate the full version of the MAVE dataset. After this process, the attribute values, paragraph ids and begin/end span indices will be consistent with the cleaned product profiles.

Step 1

Gain access to the Amazon Review Data (2018) and download the All_Amazon_Meta.json file to the folder of this repo.

Step 2

Run script

./clean_amazon_product_metadata_main.sh

to clean the Amazon metadata and join with the positive and negative labels in the labels/ folder. The output full MAVE dataset will be stored in the reproduce/ folder.

The script runs the clean_amazon_product_metadata_main.py binary using an apache beam pipeline. The binary will run on a single CPU core, but distributed setup can be enabled by changing pipeline options. The binary contains all util functions used to clean the Amazon metadata and join with labels. The pipeline will finish within a few hours on a single Intel Xeon 3GHz CPU core.

Owner
Google Research Datasets
Datasets released by Google Research
Google Research Datasets
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022