Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Overview

Contrastive learning of global and local features for medical image segmentation with limited annotations

The code is for the article "Contrastive learning of global and local features for medical image segmentation with limited annotations" which got accepted as an Oral presentation at NeurIPS 2020 (33rd international conference on Neural Information Processing Systems). With the proposed pre-training method using Contrastive learning, we get competitive segmentation performance with just 2 labeled training volumes compared to a benchmark that is trained with many labeled volumes.
https://arxiv.org/abs/2006.10511

Observations / Conclusions:

  1. For medical image segmentation, the proposed contrastive pre-training strategy incorporating domain knowledge present naturally across medical volumes yields better performance than baseline, other pre-training methods, semi-supervised, and data augmentation methods.
  2. Proposed local contrastive loss, an extension of global loss, provides an additional boost in performance by learning distinctive local-level representation to distinguish between neighbouring regions.
  3. The proposed pre-training strategy is complementary to semi-supervised and data augmentation methods. Combining them yields a further boost in accuracy.

Authors:
Krishna Chaitanya (email),
Ertunc Erdil,
Neerav Karani,
Ender Konukoglu.

Requirements:
Python 3.6.1,
Tensorflow 1.12.0,
rest of the requirements are mentioned in the "requirements.txt" file.

I) To clone the git repository.
git clone https://github.com/krishnabits001/domain_specific_dl.git

II) Install python, required packages and tensorflow.
Then, install python packages required using below command or the packages mentioned in the file.
pip install -r requirements.txt

To install tensorflow
pip install tensorflow-gpu=1.12.0

III) Dataset download.
To download the ACDC Cardiac dataset, check the website :
https://www.creatis.insa-lyon.fr/Challenge/acdc.

To download the Medical Decathlon Prostate dataset, check the website :
http://medicaldecathlon.com/

To download the MMWHS Cardiac dataset, check the website :
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/

All the images were bias corrected using N4 algorithm with a threshold value of 0.001. For more details, refer to the "N4_bias_correction.py" file in scripts.
Image and label pairs are re-sampled (to chosen target resolution) and cropped/zero-padded to a fixed size using "create_cropped_imgs.py" file.

IV) Train the models.
Below commands are an example for ACDC dataset.
The models need to be trained sequentially as follows (check "train_model/pretrain_and_fine_tune_script.sh" script for commands)
Steps :

  1. Step 1: To pre-train the encoder with global loss by incorporating proposed domain knowledge when defining positive and negative pairs.
    cd train_model/
    python pretr_encoder_global_contrastive_loss.py --dataset=acdc --no_of_tr_imgs=tr52 --global_loss_exp_no=2 --n_parts=4 --temp_fac=0.1 --bt_size=12

  2. Step 2: After step 1, we pre-train the decoder with proposed local loss to aid segmentation task by learning distinctive local-level representations.
    python pretr_decoder_local_contrastive_loss.py --dataset=acdc --no_of_tr_imgs=tr52 --pretr_no_of_tr_imgs=tr52 --local_reg_size=1 --no_of_local_regions=13 --temp_fac=0.1 --global_loss_exp_no=2 --local_loss_exp_no=0 --no_of_decoder_blocks=3 --no_of_neg_local_regions=5 --bt_size=12

  3. Step 3: We use the pre-trained encoder and decoder weights as initialization and fine-tune to segmentation task using limited annotations.
    python ft_pretr_encoder_decoder_net_local_loss.py --dataset=acdc --pretr_no_of_tr_imgs=tr52 --local_reg_size=1 --no_of_local_regions=13 --temp_fac=0.1 --global_loss_exp_no=2 --local_loss_exp_no=0 --no_of_decoder_blocks=3 --no_of_neg_local_regions=5 --no_of_tr_imgs=tr1 --comb_tr_imgs=c1 --ver=0

To train the baseline with affine and random deformations & intensity transformations for comparison, use the below code file.
cd train_model/
python tr_baseline.py --dataset=acdc --no_of_tr_imgs=tr1 --comb_tr_imgs=c1 --ver=0

V) Config files contents.
One can modify the contents of the below 2 config files to run the required experiments.
experiment_init directory contains 2 files.
Example for ACDC dataset:

  1. init_acdc.py
    --> contains the config details like target resolution, image dimensions, data path where the dataset is stored and path to save the trained models.
  2. data_cfg_acdc.py
    --> contains an example of data config details where one can set the patient ids which they want to use as train, validation and test images.

Bibtex citation:

@article{chaitanya2020contrastive,
  title={Contrastive learning of global and local features for medical image segmentation with limited annotations},
  author={Chaitanya, Krishna and Erdil, Ertunc and Karani, Neerav and Konukoglu, Ender},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}
Owner
Krishna Chaitanya
Doctoral Student, ETH Zurich
Krishna Chaitanya
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022