State-to-Distribution (STD) Model

Related tags

Deep LearningSTD
Overview

State-to-Distribution (STD) Model

In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model for a reactive atom-diatom collision system.

Requirements

  • python 3.7
  • TensorFlow 2.4
  • SciKit-learn 0.20

Setting up the environment

We recommend to use Miniconda for the creation of a virtual environment.

Once in miniconda, you can create a virtual enviroment called StD from the .yml file with the following command

conda env create --file StD.yml

On the same file, there is a version of the required packages. Additionally, a .txt file is included, if this is used the necessary command for the creation of the environment is:

conda create --file StD.txt 

To activate the virtual environment use the command:

conda activate StD

You are ready to run the code.

Predict product state distributions

For specific initial conditions

To predict product state distributions for fixed nitial conditions from the test set (77 data sets). Go to the evaluation_InitialCondition folder.

Don't remove (external_plotting directory).

python3 evaluate.py 

The evaluate.py file predicts product state distributions for all initial conditions within the test set and compares them with reference data obtained from quasi-classical trajectory similations (QCT).

Edit the code evaluation.py in the folder evaluation_InitialCondition to specify whether accuracy measures should be calculated based on comparison of the NN predictions and QCT data solely at the grid points where the NN places its predictions (flag "NN") or at all points where QCT data is available (flag "QCT") based on linear interpolation. Then run the code to obtain a file containing the desired accuracy measures, as well as a PDF with the corresponding plots. The evaluations are compared with available QCT data located in QCT_Data/Initial_Condition_Data.

For thermal reactant state dsitributions

To predict product state distributions from thermal reactant state distributions go to the evaluation_Temperature folder.

Edit the code evaluation.py in the folder evaluation_Temperature, to specify which of the four studied cases

  • Ttrans=Trot=Tvib (indices_set1.txt)
  • Ttrans != Tvib =Trot (indices_set2.txt)
  • Ttrans=Tvib != Trot (indices_set3.txt)
  • Ttrans != Tvib != Trot (indices_set4.txt)

you want to analyse.

Then run the code with the following command to obtain a file containing the desired accuracy measures, as well as a PDF with the corresponding plots for three example temperatures.

Don't remove (external_plotting directory).

python3 evaluate.py

The evaluations are compared with the available QCT data in QCT_Data/Temp_Data.

The complete list of temperatures and can be read from the file tinput.dat in data_preprocessing/TEMP/tinput.dat .

Cite as:

Julian Arnold, Debasish Koner, Juan Carlos San Vicente, Narendra Singh, Raymond J. Bemish, and Markus Meuwly,

!*Complete name of paper or do you want to cite the repository? Also, add an email or responsable*
Owner
[email protected]
Repository for free and open-source code developed by people from Markus Meuwly's group at university of Basel, Switzerland
<a href=[email protected]">
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022