Neural Dynamic Policies for End-to-End Sensorimotor Learning

Overview

Neural Dynamic Policies for End-to-End Sensorimotor Learning

In NeurIPS 2020 (Spotlight) [Project Website] [Project Video]

Shikhar Bahl, Mustafa Mukadam, Abhinav Gupta, Deepak Pathak
Carnegie Mellon University & Facebook AI Research

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning. In this work, we begin to close this gap and embed dynamics structure into deep neural network-based policies by reparameterizing action spaces with differential equations. We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space as opposed to prior policy learning methods where action represents the raw control space. The embedded structure allow us to perform end-to-end policy learning under both reinforcement and imitation learning setups. If you find this work useful in your research, please cite:

  @inproceedings{bahl2020neural,
    Author = { Bahl, Shikhar and Mukadam, Mustafa and
    Gupta, Abhinav and Pathak, Deepak},
    Title = {Neural Dynamic Policies for End-to-End Sensorimotor Learning},
    Booktitle = {NeurIPS},
    Year = {2020}
  }

1) Installation and Usage

  1. This code is based on PyTorch. This code needs MuJoCo 1.5 to run. To install and setup the code, run the following commands:
#create directory for data and add dependencies
cd neural-dynamic-polices; mkdir data/
git clone https://github.com/rll/rllab.git
git clone https://github.com/openai/baselines.git

#create virtual env
conda create --name ndp python=3.5
source activate ndp

#install requirements
pip install -r requirements.txt
#OR try
conda env create -f ndp.yaml
  1. Training imitation learning
cd neural-dynamic-polices
# name of the experiment
python main_il.py --name NAME
  1. Training RL: run the script run_rl.sh. ENV_NAME is the environment (could be throw, pick, push, soccer, faucet). ALGO-TYPE is the algorithm (dmp for NDPs, ppo for PPO [Schulman et al., 2017] and ppo-multi for the multistep actor-critic architecture we present in our paper).
sh run_rl.sh ENV_NAME ALGO-TYPE EXP_ID SEED
  1. In order to visualize trained models/policies, use the same exact arguments as used for training but call vis_policy.sh
  sh vis_policy.sh ENV_NAME ALGO-TYPE EXP_ID SEED

2) Other helpful pointers

3) Acknowledgements

We use the PPO infrastructure from: https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail. We use environment code from: https://github.com/dibyaghosh/dnc/tree/master/dnc/envs, https://github.com/rlworkgroup/metaworld, https://github.com/vitchyr/multiworld. We use pytorch and RL utility functions from: https://github.com/vitchyr/rlkit. We use the DMP skeleton code from https://github.com/abr-ijs/imednet, https://github.com/abr-ijs/digit_generator. We also use https://github.com/rll/rllab.git and https://github.com/openai/baselines.git.

Owner
Shikhar Bahl
AI Researcher at CMU (PhD, Robotics Institute) interested in deep RL, machine learning, robotics and optimization
Shikhar Bahl
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022