Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

Related tags

Deep LearningGMR
Overview

GMR(Camera Motion Agnostic 3D Human Pose Estimation)

This repo provides the source code of our arXiv paper:
Seong Hyun Kim, Sunwon Jeong, Sungbum Park, and Ju Yong Chang, "Camera motion agnostic 3D human pose estimation," arXiv preprint arXiv:2112.00343, 2021.

Environment

  • Python : 3.6
  • Ubuntu : 18.04
  • CUDA : 11.1
  • cudnn : 8.0.5
  • torch : 1.7.1
  • torchvision : 0.8.2
  • GPU : one Nvidia RTX3090

Installation

  • First, you need to install python and other packages.

    pip install -r requirements.txt
  • Then, you need to install torch and torchvision. We tested our code on torch1.7.1 and torchvision0.8.2. But our code can also work with torch version >= 1.5.0.

Quick Demo

  • Download pretrained GMR model from [pretrained GMR] and make them look like this:

    ${GMR_ROOT}
     |-- results
         |-- GMR
             |-- final_model.pth
    
  • Download other model files from [other model files] and make them look like this:

    ${GMR_ROOT}
     |-- data
         |-- gmr_data
             |-- J_regressor_extra.npy
             |-- J_regressor_h36m.npy
             |-- SMPL_NEUTRAL.pkl
             |-- gmm_08.pkl
             |-- smpl_mean_params.npz
             |-- spin_model_checkpoint.pth.tar
             |-- vibe_model_w_3dpw.pth.tar
             |-- vibe_model_wo_3dpw.pth.tar
    
  • Finally, download demo videos from [demo videos] and make them look like this:

    ${GMR_ROOT}
    |-- configs
    |-- data
    |-- lib
    |-- results
    |-- scripts
    |-- demo.py
    |-- eval_3dpw.py
    |-- eval_synthetic.py
    |-- DEMO_VIDEO1.mp4
    |-- DEMO_VIDEO2.mp4
    |-- DEMO_VIDEO3.mp4
    |-- DEMO_VIDEO4.mp4
    |-- README.md
    |-- requirements.txt
    |-- run_eval_3dpw.sh
    |-- run_eval_synthetic.sh
    |-- run_train.sh
    |-- train.py
    

Demo code consists of (bounding box tracking) - (VIBE) - (GMR)

python demo.py --vid_file DEMO_VIDEO1.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO2.mp4 --vid_type mp4 --vid_fps 30 --view_type front_large --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO3.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO4.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

Data

You need to follow directory structure of the data as below.

${GMR_ROOT}
  |-- data
    |-- amass
      |-- ACCAD
      |-- BioMotionLab_NTroje
      |-- CMU
      |-- EKUT
      |-- Eyes_Japan_Dataset
      |-- HumanEva
      |-- KIT
      |-- MPI_HDM05
      |-- MPI_Limits
      |-- MPI_mosh
      |-- SFU
      |-- SSM_synced
      |-- TCD_handMocap
      |-- TotalCapture
      |-- Transitions_mocap
    |-- gmr_data
      |-- J_regressor_extra.npy
      |-- J_regressor_h36m.npy
      |-- SMPL_NEUTRAL.pkl
      |-- gmm_08.pkl
      |-- smpl_mean_params.npz
      |-- spin_model_checkpoint.pth.tar
      |-- vibe_model_w_3dpw.pth.tar
      |-- vibe_model_wo_3dpw.pth.tar
    |-- gmr_db
      |-- amass_train_db.pt
      |-- h36m_dsd_val_db.pt
      |-- 3dpw_test_db.pt
      |-- synthetic_camera_motion_off.pt
      |-- synthetic_camera_motion_on.pt
  • Download AMASS dataset from this link and place them in data/amass. Then, you can obtain the training data through the following command. Also, you can download the training data from this link.
    source scripts/prepare_training_data.sh
    
  • Download processed 3DPW data [data]
  • Download processed Human3.6 data [data]
  • Download synthetic dataset [data]

Train

Run the commands below to start training:

./run_train.sh

Evaluation

Run the commands below to start evaluation:

# Evaluation on 3DPW dataset
./run_eval_3dpw.sh

# Evaluation on synthetic dataset
./run_eval_synthetic.sh

References

We borrowed some scripts and models externally. Thanks to the authors for providing great resources.

  • Pretrained VIBE and most of functions are borrowed from VIBE.
  • Pretrained SPIN is borrowed from SPIN.
  • SMPL model files are borrowed from SPIN and SMPLify.
Owner
Seong Hyun Kim
M.S. student in CVLAB, Kwang Woon University
Seong Hyun Kim
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022