DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

Related tags

Deep LearningDPC
Overview

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

This repo is the implementation of DPC.

PWC

 

Architecture   Cross Similarity

Tested environment

  • Python 3.6
  • PyTorch 1.6
  • CUDA 10.2

Lower CUDA and PyTorch versions should work as well.

 

Contents

 

Installation

Please follow installation.sh or simply run

bash installation.sh 

 

Datasets

The method was evaluated on:

  • SURREAL

    • 230k shapes (DPC uses the first 2k).
    • Dataset website
    • This code downloads and preprocesses SURREAL automatically.
  • SHREC’19

    • 44 Human scans.
    • Dataset website
    • This code downloads and preprocesses SURREAL automatically.
  • SMAL

    • 10000 animal models (2000 models per animal, 5 animals).
    • Dataset website
    • Due to licencing concerns, you should register to SMAL and download the dataset.
    • You should follow data/generate_smal.md after downloading the dataset.
  • TOSCA

    • 41 Animal figures.
    • Dataset website
    • This code downloads and preprocesses TOSCA automatically.

 

Training

For training run

python train_point_corr.py --dataset_name 
   

   

The code is based on PyTorch-Lightning, all PL hyperparameters are supported. (limit_train/val/test_batches, check_val_every_n_epoch etc.)

 

Tensorboard support

All metrics are being logged automatically and stored in

output/shape_corr/DeepPointCorr/arch_DeepPointCorr/dataset_name_
   
    /run_
    

    
   

Run tesnroboard --logdir= to see the the logs.

Example of tensorboard output:

tensorboard

 

Inference

For testing, simply add --do_train false flag, followed by --resume_from_checkpoint with the relevant checkpoint.

python train_point_corr.py --do_train false  --resume_from_checkpoint 
   

   

Test phase visualizes each sample, for faster inference pass --show_vis false.

We provide a trained checkpoint repreducing the results provided in the paper, to test and visualize the model run

python train_point_corr.py --show_vis --do_train false --resume_from_checkpoint data/ckpts/surreal_ckpt.ckpt

Results  

Citing & Authors

If you find this repository helpful feel free to cite our publication -

@misc{lang2021dpc,
      title={DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction}, 
      author={Itai Lang and Dvir Ginzburg and Shai Avidan and Dan Raviv},
      year={2021},
      eprint={2110.08636},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact: Dvir Ginzburg, Itai Lang

Owner
Dvir Ginzburg
Computer vision researcher. Currently pursuing my Ph.D. at Tel-Aviv University on deep neural networks for point clouds.
Dvir Ginzburg
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Xintao 1.4k Dec 25, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022