Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

Overview

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation

License CC BY_NC

This repository contains the official PyTorch implementation of the following paper:

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation
Wonjong Jang, Gwangjin Ju, Yucheol Jung, Jiaolong Yang, Xin Tong, Seungyong Lee, SIGGRAPH 2021

Requirements

  • PyTorch 1.3.1
  • torchvision 0.4.2
  • CUDA 10.1/10.2
  • dlib 19.22.0
  • requests 2.23.0
  • tqdm 4.46.2

If you are using Anaconda environment and get errors regarding compiler version mismatch, check issue #1.

Usage

First download pre-trained model weights:

bash ./download.sh

Train

python -m torch.distributed.launch --nproc_per_node=N_GPU train.py --name EXPERIMENT_NAME --freeze_D

Test

Test on user's input images:

python test.py --ckpt CHECKPOINT_PATH --input_dir INPUT_IMAGE_PATH --output_dir OUTPUT_CARICATURE_PATH --invert_images

We provide some sample images. Test on sample images:

python test.py --ckpt CHECKPOINT_PATH --input_dir examples/samples --output_dir examples/results --invert_images

It inverts latent codes from input photos and generates caricatures from latent codes.

Input image Output caricature
img1 cari1
img2 cari2
img3 cari3

Citation

If you find this code useful, please consider citing:

@article{Jang2021StyleCari,
  author    = {Wonjong Jang and Gwangjin Ju and Yucheol Jung and Jiaolong Yang and Xin Tong and Seungyong Lee},
  title     = {StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation},
  booktitle = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH)},
  publisher = {ACM},
  volume = {40},
  number = {4},
  year = {2021}
}

Contact

You can have contact with [email protected] or [email protected]

License

This software is being made available under the terms in the LICENSE file.

Any exemptions to these terms requrie a licens from the Pohang University of Science and Technology.

Owner
Wonjong Jang
Ph.D. candidate at POSTECH
Wonjong Jang
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023