[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Overview

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22)

Picture1

Preview version paper of this work is available at: https://arxiv.org/abs/2112.02853

Qualitative results and comparisons with previous SOTAs are available at: https://youtu.be/X6BsS3t3wnc

This repo is a preview version. More details will be added later.

Abstract

Error propagation is a general but crucial problem in online semi-supervised video object segmentation. We aim to suppress error propagation through a correction mechanism with high reliability.

The key insight is to disentangle the correction from the conventional mask propagation process with reliable cues.

We introduce two modulators, propagation and correction modulators, to separately perform channel-wise re-calibration on the target frame embeddings according to local temporal correlations and reliable references respectively. Specifically, we assemble the modulators with a cascaded propagation-correction scheme. This avoids overriding the effects of the reliable correction modulator by the propagation modulator.

Although the reference frame with the ground truth label provides reliable cues, it could be very different from the target frame and introduce uncertain or incomplete correlations. We augment the reference cues by supplementing reliable feature patches to a maintained pool, thus offering more comprehensive and expressive object representations to the modulators. In addition, a reliability filter is designed to retrieve reliable patches and pass them in subsequent frames.

Our model achieves state-of-the-art performance on YouTube-VOS18/19 and DAVIS17-Val/Test benchmarks. Extensive experiments demonstrate that the correction mechanism provides considerable performance gain by fully utilizing reliable guidance.

Requirements

This docker image may contain some redundent packages. A more light-weight one will be generated later.

docker image: xxiaoh/vos:10.1-cudnn7-torch1.4_v3

Citation

If you find this work is useful for your research, please consider citing:

@misc{xu2021reliable,
  title={Reliable Propagation-Correction Modulation for Video Object Segmentation}, 
  author={Xiaohao Xu and Jinglu Wang and Xiao Li and Yan Lu},
  year={2021},
  eprint={2112.02853},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Credit

CFBI: https://github.com/z-x-yang/CFBI

Deeplab: https://github.com/VainF/DeepLabV3Plus-Pytorch

GCT: https://github.com/z-x-yang/GCT

Acknowledgement

Firstly, the author would like to thank Rex for his insightful viewpoints about VOS during e-mail discussion! Also, this work is largely built upon the codebase of CFBI. Thanks for the author of CFBI to release such a wonderful code repo for further work to build upon!

Related impressive works in VOS

AOT [NeurIPS 2021]: https://github.com/z-x-yang/AOT

STCN [NeurIPS 2021]: https://github.com/hkchengrex/STCN

MiVOS [CVPR 2021]: https://github.com/hkchengrex/MiVOS

SSTVOS [CVPR 2021]: https://github.com/dukebw/SSTVOS

GraphMemVOS [ECCV 2020]: https://github.com/carrierlxk/GraphMemVOS

CFBI [ECCV 2020]: https://github.com/z-x-yang/CFBI

STM [ICCV 2019]: https://github.com/seoungwugoh/STM

FEELVOS [CVPR 2019]: https://github.com/kim-younghan/FEELVOS

Useful websites for VOS

The 1st Large-scale Video Object Segmentation Challenge: https://competitions.codalab.org/competitions/19544#learn_the_details

The 2nd Large-scale Video Object Segmentation Challenge - Track 1: Video Object Segmentation: https://competitions.codalab.org/competitions/20127#learn_the_details

The Semi-Supervised DAVIS Challenge on Video Object Segmentation @ CVPR 2020: https://competitions.codalab.org/competitions/20516#participate-submit_results

DAVIS: https://davischallenge.org/

YouTube-VOS: https://youtube-vos.org/

Papers with code for Semi-VOS: https://paperswithcode.com/task/semi-supervised-video-object-segmentation

Welcome to comments and discussions!!

Xiaohao Xu: [email protected]

Owner
Xiaohao Xu
Xiaohao Xu
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022