Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

Overview

FastBERT

Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

Good News

2021/10/29 - Code: Code of FastPLM is released on both Pypi and Github.

2021/09/08 - Paper: Journal version of FastBERT (FastPLM) is accepted by IEEE TNNLS. "An Empirical Study on Adaptive Inference for Pretrained Language Model".

2020/07/05 - Update: Pypi version of FastBERT has been launched. Please see fastbert-pypi.

Install fastbert with pip

$ pip install fastbert

Requirements

python >= 3.4.0, Install all the requirements with pip.

$ pip install -r requirements.txt

Quick start on the Chinese Book review dataset

Download the pre-trained Chinese BERT parameters from here, and save it to the models directory with the name of "Chinese_base_model.bin".

Run the following command to validate our FastBERT with Speed=0.5 on the Book review datasets.

$ CUDA_VISIBLE_DEVICES="0" python3 -u run_fastbert.py \
        --pretrained_model_path ./models/Chinese_base_model.bin \
        --vocab_path ./models/google_zh_vocab.txt \
        --train_path ./datasets/douban_book_review/train.tsv \
        --dev_path ./datasets/douban_book_review/dev.tsv \
        --test_path ./datasets/douban_book_review/test.tsv \
        --epochs_num 3 --batch_size 32 --distill_epochs_num 5 \
        --encoder bert --fast_mode --speed 0.5 \
        --output_model_path  ./models/douban_fastbert.bin

Meaning of each option.

usage: --pretrained_model_path Path to initialize model parameters.
       --vocab_path Path to the vocabulary.
       --train_path Path to the training dataset.
       --dev_path Path to the validating dataset.
       --test_path Path to the testing dataset.
       --epochs_num The epoch numbers of fine-tuning.
       --batch_size Batch size.
       --distill_epochs_num The epoch numbers of the self-distillation.
       --encoder The type of encoder.
       --fast_mode Whether to enable the fast mode of FastBERT.
       --speed The Speed value in the paper.
       --output_model_path Path to the output model parameters.

Test results on the Book review dataset.

Test results at fine-tuning epoch 3 (Baseline): Acc.=0.8688;  FLOPs=21785247744;
Test results at self-distillation epoch 1     : Acc.=0.8698;  FLOPs=6300902177;
Test results at self-distillation epoch 2     : Acc.=0.8691;  FLOPs=5844839008;
Test results at self-distillation epoch 3     : Acc.=0.8664;  FLOPs=5170940850;
Test results at self-distillation epoch 4     : Acc.=0.8664;  FLOPs=5170940327;
Test results at self-distillation epoch 5     : Acc.=0.8664;  FLOPs=5170940327;

Quick start on the English Ag.news dataset

Download the pre-trained English BERT parameters from here, and save it to the models directory with the name of "English_uncased_base_model.bin".

Download the ag_news.zip from here, and then unzip it to the datasets directory.

Run the following command to validate our FastBERT with Speed=0.5 on the Ag.news datasets.

$ CUDA_VISIBLE_DEVICES="0" python3 -u run_fastbert.py \
        --pretrained_model_path ./models/English_uncased_base_model.bin \
        --vocab_path ./models/google_uncased_en_vocab.txt \
        --train_path ./datasets/ag_news/train.tsv \
        --dev_path ./datasets/ag_news/test.tsv \
        --test_path ./datasets/ag_news/test.tsv \
        --epochs_num 3 --batch_size 32 --distill_epochs_num 5 \
        --encoder bert --fast_mode --speed 0.5 \
        --output_model_path  ./models/ag_news_fastbert.bin

Test results on the Ag.news dataset.

Test results at fine-tuning epoch 3 (Baseline): Acc.=0.9447;  FLOPs=21785247744;
Test results at self-distillation epoch 1     : Acc.=0.9308;  FLOPs=2172009009;
Test results at self-distillation epoch 2     : Acc.=0.9311;  FLOPs=2163471246;
Test results at self-distillation epoch 3     : Acc.=0.9314;  FLOPs=2108341649;
Test results at self-distillation epoch 4     : Acc.=0.9314;  FLOPs=2108341649;
Test results at self-distillation epoch 5     : Acc.=0.9314;  FLOPs=2108341649;

Datasets

More datasets can be downloaded from here.

Other implementations

There are some other excellent implementations of FastBERT.

Acknowledgement

This work is funded by 2019 Tencent Rhino-Bird Elite Training Program. Work done while this author was an intern at Tencent.

If you use this code, please cite this paper:

@inproceedings{weijie2020fastbert,
  title={{FastBERT}: a Self-distilling BERT with Adaptive Inference Time},
  author={Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, Qi Ju},
  booktitle={Proceedings of ACL 2020},
  year={2020}
}
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022