(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

Overview

RDPNet

IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

PyTorch training and testing code are available. We have achieved SOTA performance on the salient instance segmentation (SIS) task.

If you run into any problems or feel any difficulties to run this code, do not hesitate to leave issues in this repository.

My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

[Official Ver.] [PDF]

Citations

If you are using the code/model/data provided here in a publication, please consider citing:

@article{wu2021regularized,
   title={Regularized Densely-Connected Pyramid Network for Salient Instance Segmentation},
   volume={30},
   ISSN={1941-0042},
   DOI={10.1109/tip.2021.3065822},
   journal={IEEE Transactions on Image Processing},
   publisher={Institute of Electrical and Electronics Engineers (IEEE)},
   author={Wu, Yu-Huan and Liu, Yun and Zhang, Le and Gao, Wang and Cheng, Ming-Ming},
   year={2021},
   pages={3897–3907}
}

Requirements

  • PyTorch 1.1/1.0.1, Torchvision 0.2.2.post3, CUDA 9.0/10.0/10.1, apex
  • Validated on Ubuntu 16.04/18.04, PyTorch 1.1/1.0.1, CUDA 9.0/10.0/10.1, NVIDIA TITAN Xp

Installing

Please check INSTALL.md.

Note: we have provided an early tested apex version (url: here) and place it in our root folder (./apex/). You can also try other apex versions, which are not tested by us.

Data

Before training/testing our network, please download the data: [Google Drive, 0.7G], [Baidu Yun, yhwu].

The above zip file contains data of the ISOD and SOC dataset.

Note: if you are blocked by Google and Baidu services, you can contact me via e-mail and I will send you a copy of data and model weights.

We have processed the data to json format so you can use them without any preprocessing steps. After completion of downloading, extract the data and put them to ./datasets/ folder. Then, the ./datasets/ folder should contain two folders: isod/, soc/.

Train

It is very simple to train our network. We have prepared a script to run the training step. You can at first train our ResNet-50-based network on the ISOD dataset:

cd scripts
bash ./train_isod.sh

The training step should cost less than 1 hour for single GTX 1080Ti or TITAN Xp. This script will also store the network code, config file, log, and model weights.

We also provide ResNet-101 and ResNeXt-101 training scripts, and they are all in the scripts folder.

The default training code is for single gpu training since the training time is very low. You can also try multi gpus training by replacing --nproc_per_node=1 \ with --nproc_per_node=2 \ for 2-gpu training.

Test / Evaluation / Results

It is also very simple to test our network. First you need to download the model weights:

Taking the test on the ISOD dataset for example:

  1. Download the ISOD trained model weights, put it to model_zoo/ folder.
  2. cd the scripts folder, then run bash test_isod.sh.
  3. Testing step usually costs less than a minute. We use the official cocoapi for evaluation.

Note1: We strongly recommend to use cocoapi to evaluate the performance. Such evaluation is also automatically done with the testing process.

Note2: Default cocoapi evaluation outputs AP, AP50, AP75 peformance. To output the score of AP70, you need to change the cocoeval.py in cocoapi. See changes in this commitment:

BEFORE: stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
AFTER:  stats[2] = _summarize(1, iouThr=.70, maxDets=self.params.maxDets[2])

Note3: If you are not familiar with the evalutation metric AP, AP50, AP75, you can refer to the introduction website here. Our official paper also introduces them in the Experiments section.

Visualize

We provide a simple python script to visualize the result: demo/visualize.py.

  1. Be sure that you have downloaded the ISOD pretrained weights [Google Drive, 0.14G].
  2. Put images to the demo/examples/ folder. I have prepared some images in this paper so do not worry that you have no images.
  3. cd demo, run python visualize.py
  4. Visualized images are generated in the same folder. You can change the target folder in visualize.py.

TODO

  1. Release the weights for real-world applications
  2. Add Jittor implementation
  3. Train with the enhanced base detector (FCOS TPAMI version) for better performance. Currently the base detector is the FCOS conference version with a bit lower performance.

Other Tips

I am free to answer your question if you are interested in salient instance segmentation. I also encourage everyone to contact me via my e-mail. My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

Acknowlogdement

This repository is built under the help of the following three projects for academic use only:

Owner
Yu-Huan Wu
Ph.D. student at Nankai University
Yu-Huan Wu
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022