SNIPS: Solving Noisy Inverse Problems Stochastically

Overview

SNIPS: Solving Noisy Inverse Problems Stochastically

This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problems Stochastically.

by Bahjat Kawar, Gregory Vaksman, and Michael Elad, Computer Science Department, Technion.

Running Experiments

Dependencies

Run the following conda line to install all necessary python packages for our code and set up the snips environment.

conda env create -f environment.yml

The environment includes cudatoolkit=11.0. You may change that depending on your hardware.

Project structure

main.py is the file that you should run for both training and sampling. Execute python main.py --help to get its usage description:

usage: main.py [-h] --config CONFIG [--seed SEED] [--exp EXP] --doc DOC
               [--comment COMMENT] [--verbose VERBOSE] [-i IMAGE_FOLDER]
               [-n NUM_VARIATIONS] [-s SIGMA_0] [--degradation DEGRADATION]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Path to the config file
  --seed SEED           Random seed
  --exp EXP             Path for saving running related data.
  --doc DOC             A string for documentation purpose. Will be the name
                        of the log folder.
  --comment COMMENT     A string for experiment comment
  --verbose VERBOSE     Verbose level: info | debug | warning | critical
  -i IMAGE_FOLDER, --image_folder IMAGE_FOLDER
                        The folder name of samples
  -n NUM_VARIATIONS, --num_variations NUM_VARIATIONS
                        Number of variations to produce
  -s SIGMA_0, --sigma_0 SIGMA_0
                        Noise std to add to observation
  --degradation DEGRADATION
                        Degradation: inp | deblur_uni | deblur_gauss | sr2 |
                        sr4 | cs4 | cs8 | cs16

Configuration files are in config/. You don't need to include the prefix config/ when specifying --config . All files generated when running the code is under the directory specified by --exp. They are structured as:

<exp> # a folder named by the argument `--exp` given to main.py
├── datasets # all dataset files
│   ├── celeba # all CelebA files
│   └── lsun # all LSUN files
├── logs # contains checkpoints and samples produced during training
│   └── <doc> # a folder named by the argument `--doc` specified to main.py
│      └── checkpoint_x.pth # the checkpoint file saved at the x-th training iteration
├── image_samples # contains generated samples
│   └── <i>
│       ├── stochastic_variation.png # samples generated from checkpoint_x.pth, including original, degraded, mean, and std   
│       ├── results.pt # the pytorch tensor corresponding to stochastic_variation.png
│       └── y_0.pt # the pytorch tensor containing the input y of SNIPS

Downloading data

You can download the aligned and cropped CelebA files from their official source here. The LSUN files can be downloaded using this script. For our purposes, only the validation sets of LSUN bedroom and tower need to be downloaded.

Running SNIPS

If we want to run SNIPS on CelebA for the problem of super resolution by 2, with added noise of standard deviation 0.1, and obtain 3 variations, we can run the following

python main.py -i celeba --config celeba.yml --doc celeba -n 3 --degradation sr2 --sigma_0 0.1

Samples will be saved in /image_samples/celeba .

The available degradations are: Inpainting (inp), Uniform deblurring (deblur_uni), Gaussian deblurring (deblur_gauss), Super resolution by 2 (sr2) or by 4 (sr4), Compressive sensing by 4 (cs4), 8 (cs8), or 16 (cs16). The sigma_0 can be any value from 0 to 1.

Pretrained Checkpoints

Link: https://drive.google.com/drive/folders/1217uhIvLg9ZrYNKOR3XTRFSurt4miQrd?usp=sharing

These checkpoint files are provided as-is from the authors of NCSNv2. You can use the CelebA, LSUN-bedroom, and LSUN-tower datasets' pretrained checkpoints. We assume the --exp argument is set to exp.

Acknowledgement

This repo is largely based on the NCSNv2 repo, and uses modified code from this repo for implementing the blurring matrix.

References

If you find the code/idea useful for your research, please consider citing

@article{kawar2021snips,
  title={SNIPS: Solving Noisy Inverse Problems Stochastically},
  author={Kawar, Bahjat and Vaksman, Gregory and Elad, Michael},
  journal={arXiv preprint arXiv:2105.14951},
  year={2021}
}
Owner
Bahjat Kawar
Bahjat Kawar
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
Özlem Taşkın 0 Feb 23, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022