PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Overview

WarpedGANSpace: Finding non-linear RBF paths in GAN latent space

Authors official PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021). If you use this code for your research, please cite our paper.

Overview

In this work, we try to discover non-linear interpretable paths in GAN latent space. For doing so, we model non-linear paths using RBF-based warping functions, which by warping the latent space, endow it with vector fields (their gradients). We use the latter to traverse the latent space across the paths determined by the aforementioned vector fields for any given latent code.

WarpedGANSpace Overview

Each warping function is defined by a set of N support vectors (a "support set") and its gradient is given analytically as shown above. For a given warping function fk and a given latent code z, we traverse the latent space as illustrated below:

Non-linear interpretable path

Each warping function gives rise to a family of non-linear paths. We learn a set of such warping functions (implemented by the *Warping Network*), i.e., a set of such non-linear path families, so as they are distinguishable to each other; that is, the image transformations that they produce should be easily distinguishable be a discriminator network (the *Reconstructor*). An overview of the method is given below.

WarpedGANSpace Overview

Installation

We recommend installing the required packages using python's native virtual environment. For Python 3.4+, this can be done as follows:

$ python -m venv warped-gan-space
$ source warped-gan-space/bin/activate
(warped-gan-space) $ pip install --upgrade pip
(warped-gan-space) $ pip install -r requirements.txt

Prerequisite pretrained models

Download the prerequisite pretrained models (i.e., GAN generators, face detector, pose estimator, etc.) as follows:

$ python download.py	

This will create a directory models/pretrained with the following sub-directories (~3.2GiB):

./models/pretrained/
├── generators/
├── arcface/
├── fairface/
├── hopenet/
└── sfd/

Training

For training a WarpedGANSpace model you need to use train.py (check its basic usage by running python train.py -h).

For example, in order to train a WarpedGANSpace model on the ProgGAN pre-trained (on CelebA) generator for discovering K=128 interpretable paths (latent warping functions) with N=32 support dipoles each (i.e., 32 pairs of bipolar RBFs) run the following command:

python train.py -v --gan-type=ProgGAN --reconstructor-type=ResNet --learn-gammas --num-support-sets=128 --num-support-dipoles=32 --min-shift-magnitude=0.15 --max-shift-magnitude=0.25 --batch-size=8 --max-iter=200000

In the example above, batch size is set to 8 and the training will be conducted for 200000 iterations. Minimum and maximum shift magnitudes are set to 0.15 and 0.25, respectively (please see Sect. 3.2 in the paper for more details). A set of auxiliary training scripts (for all available GAN generators) can be found under scripts/train/.

The training script will create a directory with the following name format:


   
    (-
    
     )-
     
      -K
      
       -N
       
        (-LearnAlphas)(-LearnGammas)-eps
        
         _
          
         
        
       
      
     
    
   

E.g., ProgGAN-ResNet-K128-N128-LearnGammas-eps0.15_0.25, under experiments/wip/ while training is in progress, which after training completion, will be copied under experiments/complete/. This directory has the following structure:

├── models/
├── tensorboard/
├── args.json
├── stats.json
└── command.sh

where models/ contains the weights for the reconstructor (reconstructor.pt) and the support sets (support_sets.pt). While training is in progress (i.e., while this directory is found under experiments/wip/), the corresponding models/ directory contains a checkpoint file (checkpoint.pt) containing the last iteration, and the weights for the reconstructor and the support sets, so as to resume training. Re-run the same command, and if the last iteration is less than the given maximum number of iterations, training will resume from the last iteration. This directory will be referred to as EXP_DIR for the rest of this document.

Evaluation

After a WarpedGANSpace is trained, the corresponding experiment's directory (i.e., EXP_DIR) can be found under experiments/complete/. The evaluation of the model includes the following steps:

  • Latent space traversals For a given set of latent codes, we first generate images for all K paths (warping functions) and save the traversals (path latent codes and generated image sequences).
  • Attribute space traversals In the case of facial images (i.e., ProgGAN and StyleGAN2), for the latent traversals above, we calculate the corresponding attribute paths (i.e., facial expressions, pose, etc.).
  • Interpretable paths discovery and ranking [To Appear Soon]

Before calculating latent space traversals, you need to create a pool of latent codes/images for the corresponding GAN type. This can be done using sample_gan.py. The name of the pool can be passed using --pool; if left empty will be used instead. The pool of latent codes/images will be stored under experiments/latent_codes/ / . We will be referring to it as a POOL for the rest of this document.

For example, the following command will create a pool named ProgGAN_4 under experiments/latent_codes/ProgGAN/:

python sample_gan.py -v --gan-type=ProgGAN --num-samples=4

Latent space traversals

Latent space traversals can be calculated using the script traverse_latent_space.py (please check its basic usage by running traverse_latent_space.py -h) for a given model and a given POOL.

Attribute space traversals

[To Appear Soon]

Interpretable paths discovery and ranking

[To Appear Soon]

Citation

[1] Christos Tzelepis, Georgios Tzimiropoulos, and Ioannis Patras. WarpedGANSpace: Finding non-linear rbf paths in gan latent space. IEEE International Conference on Computer Vision (ICCV), 2021.

Bibtex entry:

@inproceedings{warpedganspace,
  title={{WarpedGANSpace}: Finding non-linear {RBF} paths in {GAN} latent space},
  author={Tzelepis, Christos and Tzimiropoulos, Georgios and Patras, Ioannis},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Acknowledgment

This research was supported by the EU's Horizon 2020 programme H2020-951911 AI4Media project.

Owner
Christos Tzelepis
Postdoctoral research associate at Queen Mary University of London | MultiMedia & Vision Research Group (MMV Group).
Christos Tzelepis
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022