[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Overview

Unsupervised Object-Level Representation Learning from Scene Images

This repository contains the official PyTorch implementation of the ORL algorithm for self-supervised representation learning.

Unsupervised Object-Level Representation Learning from Scene Images,
Jiahao Xie, Xiaohang Zhan, Ziwei Liu, Yew Soon Ong, Chen Change Loy
In NeurIPS 2021
[Paper][Project Page][Bibtex]

highlights

Updates

  • [12/2021] Code and pre-trained models of ORL are released.

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Models

Pre-trained models can be downloaded from Google Drive. Please see our paper for transfer learning results on different benchmarks.

Usage

Stage 1: Image-level pre-training

You need to pre-train an image-level contrastive learning model in this stage. Take BYOL as an example:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage1/r50_bs512_ep800.py 8

This stage can be freely replaced with other image-level contrastive learning models.

Stage 2: Correspondence discovery

  • KNN image retrieval

First, extract all features in the training set using the pre-trained model weights in Stage 1:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage1/r50_bs512_ep800_extract_feature.py 8 --resume_from work_dirs/selfsup/orl/coco/stage1/r50_bs512_ep800/epoch_800.pth

Second, retrieve KNN for each image using tools/coco_knn_image_retrieval.ipynb. The corresponding KNN image ids will be saved as a json file train2017_knn_instance.json under data/coco/meta/.

  • RoI generation

Apply selective search to generate region proposals for all images in the training set:

bash tools/dist_selective_search_single_gpu.sh configs/selfsup/orl/coco/stage2/selective_search_train2017.py data/coco/meta/train2017_selective_search_proposal.json

The script and config only support single-image single-gpu inference since different images can have different number of generated region proposals by selective search, which cannot be gathered if distributed in multiple gpus. You can also directly download here under data/coco/meta/ if you want to skip this step.

  • RoI pair retrieval

Retrieve top-ranked RoI pairs:

bash tools/dist_generate_correspondence_single_gpu.sh configs/selfsup/orl/coco/stage2/r50_bs512_ep800_generate_all_correspondence.py work_dirs/selfsup/orl/coco/stage1/r50_bs512_ep800/epoch_800.pth data/coco/meta/train2017_knn_instance.json data/coco/meta/train2017_knn_instance_correspondence.json

The script and config also only support single-image single-gpu inference since different image pairs can have different number of generated inter-RoI pairs, which cannot be gathered if distributed in multiple gpus. A workaround to speed up the retrieval process is to split the whole dataset into several parts and process each part on each gpu in parallel. We provide an example of these configs (10 parts in total) in configs/selfsup/orl/coco/stage2/r50_bs512_ep800_generate_partial_correspondence/. After generating each part, you can use tools/merge_partial_correspondence_files.py to merge them together and save the final correspondence json file train2017_knn_instance_correspondence.json under data/coco/meta/.

Stage 3: Object-level pre-training

After obtaining the correspondence file in Stage 2, you can then perform object-level pre-training:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage3/r50_bs512_ep800.py 8

Transferring to downstream tasks

Please refer to GETTING_STARTED.md for transferring to various downstream tasks.

Acknowledgement

We would like to thank the OpenSelfSup for its open-source project and PyContrast for its detection evaluation configs.

Citation

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows:

@inproceedings{xie2021unsupervised,
  title={Unsupervised Object-Level Representation Learning from Scene Images},
  author={Xie, Jiahao and Zhan, Xiaohang and Liu, Ziwei and Ong, Yew Soon and Loy, Chen Change},
  booktitle={NeurIPS},
  year={2021}
}
Owner
Jiahao Xie
Jiahao Xie
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023