Demo code for paper "Learning optical flow from still images", CVPR 2021.

Overview

Depthstillation

Demo code for "Learning optical flow from still images", CVPR 2021.

[Project page] - [Paper] - [Supplementary]

This code is provided to replicate the qualitative results shown in the supplementary material, Sections 2-4. The code has been tested using Ubuntu 20.04 LTS, python 3.8 and gcc 9.3.0

Alt text

Reference

If you find this code useful, please cite our work:

@inproceedings{Aleotti_CVPR_2021,
  title     = {Learning optical flow from still images},
  author    = {Aleotti, Filippo and
               Poggi, Matteo and
               Mattoccia, Stefano},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2021}
}

Contents

  1. Introduction
  2. Usage
  3. Supplementary
  4. Weights
  5. Contacts
  6. Acknowledgments

Introduction

This paper deals with the scarcity of data for training optical flow networks, highlighting the limitations of existing sources such as labeled synthetic datasets or unlabeled real videos. Specifically, we introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture. Given an image, we use an off-the-shelf monocular depth estimation network to build a plausible point cloud for the observed scene. Then, we virtually move the camera in the reconstructed environment with known motion vectors and rotation angles, allowing us to synthesize both a novel view and the corresponding optical flow field connecting each pixel in the input image to the one in the new frame. When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data compared to the same models trained either on annotated synthetic datasets or unlabeled videos, and better specialization if combined with synthetic images.

Usage

Install the project requirements in a new python 3 environment:

virtualenv -p python3 learning_flow_env
source learning_flow_env/bin/activate
pip install -r requirements.txt

Compile the forward_warping module, written in C (required to handle warping collisions):

cd external/forward_warping
bash compile.sh
cd ../..

You are now ready to run the depthstillation.py script:

python depthstillation.py 

By switching some parameters you can generate all the qualitatives provided in the supplementary material.

These parameters are:

  • num_motions: changes the number of virtual motions
  • segment: enables instance segmentation (for independently moving objects)
  • mask_type: mask selection. Options are H' and H
  • num_objects: sets the number of independently moving objects (one, in this example)
  • no_depth: disables monocular depth and force depth to assume a constant value
  • no_sharp: disables depth sharpening
  • change_k: uses different intrinsics K
  • change_motion: samples a different motion (ignored if num_motions greater than 1)

For instance, to simulate a different K settings, just run:

python depthstillation.py --change_k

The results are saved in dCOCO folder, organized as follows:

  • depth_color: colored depth map
  • flow: generated flow labels (in 16bit KITTI format)
  • flow_color: colored flow labels
  • H: H mask
  • H': H' mask
  • im0: real input image
  • im1: generated virtual image
  • im1_raw: generated virtual image (pre-inpainting)
  • instances_color: colored instance map (if --segment is enabled)
  • M: M mask
  • M': M' mask
  • P: P mask

We report the list of files used to depthstill dCOCO in samples/dCOCO_file_list.txt

Supplementary

We report here the list of commands to obtain, in the same order, the Figures shown in Sections 2-4 of the Supplementary Material:

  • Section 2 -- the first figure is obtained with default parameters, then we use --no_depth and --no_depth --segment respectively
  • Section 3 -- the first figure is obtained with --no_sharp, the remaining figures with default parameters or by setting --mask_type "H".
  • Section 4 -- we show three times the results obtained by default parameters, followed respectively by figures generated using --change_k, --change_motion and --segment individually.

Weights

We provide RAFT models trained in our experiments. To run them and reproduce our results, please refer to RAFT repository:

Contacts

m [dot] poggi [at] unibo [dot] it

Acknowledgments

Thanks to Clément Godard and Niantic for sharing monodepth2 code, used to simulate camera motion.

Our work is inspired by Jamie Watson et al., Learning Stereo from Single Images.

Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022