ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

Overview

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

This repository is the official implementation of the empirical research presented in the supplementary material of the paper, ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees.

Requirements

To install requirements:

pip install -r requirements.txt

Please install Python before running the above setup command. The code was tested on Python 3.8.10.

Create a folder to store all the models and results:

mkdir ckeckpoint

Training

To fully replicate the results below, train all the models by running the following two commands:

./train_cuda0.sh
./train_cuda1.sh

We used two separate scripts because we had two NVIDIA GPUs and we wanted to run two training processes for different models at the same time. If you have more GPUs or resources, you can submit multiple jobs and let them run in parallel.

To train a model with different seeds (initializations), run the command in the following form:

python main.py --data <dataset> --model <DNN_model> --mu <learning_rate>

The above command uses the default seed list. You can also specify your seeds like the following example:

python main.py --data CIFAR10 --model CIFAR10_BNResNEst_ResNet_110 --seed_list 8 9

Run this command to see how to customize your training or hyperparameters:

python main.py --help

Evaluation

To evaluate all trained models on benchmarks reported in the tables below, run:

./eval.sh

To evaluate a model, run:

python eval.py --data  <dataset> --model <DNN_model> --seed_list <seed>

Pre-trained models

All pretrained models can be downloaded from this Google Drive link. All last_model.pt files are fully trained models.

Results

Image Classification on CIFAR-10

Architecture Standard ResNEst BN-ResNEst A-ResNEst
WRN-16-8 95.56% (11M) 94.39% (11M) 95.48% (11M) 95.29% (8.7M)
WRN-40-4 95.45% (9.0M) 94.58% (9.0M) 95.61% (9.0M) 95.48% (8.4M)
ResNet-110 94.46% (1.7M) 92.77% (1.7M) 94.52% (1.7M) 93.97% (1.7M)
ResNet-20 92.60% (0.27M) 91.02% (0.27M) 92.56% (0.27M) 92.47% (0.24M)

Image Classification on CIFAR-100

Architecture Standard ResNEst BN-ResNEst A-ResNEst
WRN-16-8 79.14% (11M) 75.43% (11M) 78.99% (11M) 78.74% (8.9M)
WRN-40-4 79.08% (9.0M) 75.16% (9.0M) 78.97% (9.0M) 78.62% (8.7M)
ResNet-110 74.08% (1.7M) 69.08% (1.7M) 73.95% (1.7M) 72.53% (1.9M)
ResNet-20 68.56% (0.28M) 64.73% (0.28M) 68.47% (0.28M) 68.16% (0.27M)

BibTeX

@inproceedings{chen2021resnests,
  title={{ResNEsts} and {DenseNEsts}: Block-based {DNN} Models with Improved Representation Guarantees},
  author={Chen, Kuan-Lin and Lee, Ching-Hua and Garudadri, Harinath and Rao, Bhaskar D.},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

🐹 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis NĂșñez-FernĂĄndez 5 Oct 20, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022