All of the figures and notebooks for my deep learning book, for free!

Overview

"Deep Learning - A Visual Approach" by Andrew Glassner

This is the official repo for my book from No Starch Press.

Ordering the book

My book is called Deep Learning: A Visual Approach Click on the link to order it in physical or Ebook formats.

Free Bonus Chapters!

Three free bonus chapters! How to use scikit-learn for machine learning, and how to use Keras for deep learning. Free text, free notebooks, free figures, the whole thing! Just click here or click on the Bonus Chapters repo. The figures and notebooks are saved with all of the other figures and notebooks (see below).

Free Figures!

All the figures from my book, for free, in high-resolution PNG format. To help you search, there's a directory called Thumbnails which offers contact sheets of the figures, 20 per page.

All of these figures are released under the MIT license. This means you're free to use them any way you like, as long as you keep the copyright associated with them somehow. Use them for your classes, reports, papers, presentations, whatever you like!

You're not required to attribute me or the book if you use these images, but I'd appreciate it if you would.

Some figures include photographs. Many of these are by me, and I've given you permission to use them. All other photos are from Wikiart, Wikimedia, or Pixabay. The book provides a citation and URL to the source of each of these images. The first two sites state that their images are in the public domain. All images selected from Pixabay are labeled as released under the Creative Commons CC0 license, and explicitly state, "Free for commercial use. No attribution required."

Free Notebooks!

Jupyter notebooks for making many of the figures in the book.

Since the purpose of the notebooks was to make figures, rather than to serve as tutorials, they are only lightly commented, but they're meant to be readable. So I used longer but clearer variable names, and whenever I could I preferred clarity over most other concerns. This means that much of the code can be shortened, reorganized or otherwise refactored, and almost always it can be changed to be more compact, elegant, and faster. Feel free to dig in, optimize, convert to other languages, or otherwise play with the code.

All the notebooks are released under the MIT license. Informally, you're free to do pretty much anything with the code, including using it in your own projects, or even including it in commercial projects, as long as you keep my copyright along with the code. While I strove for accuracy and correctness, there is no warranty that the code is bug-free or fit for any purpose.

Some notebooks work with images. The images I used in the book are included with the notebooks. See the section below on Figures for details on their licensing, and see the book for the URL where each image may be found. All images without an explicit citation in the book are by the author, and are released under the MIT license.

Errata

A book of this size will inevitably have errors. For each error I'm aware of, I'll update the appropriate figure(s) and/or notebook(s), and then put a description of the error (along with a credit to the person who found it) in a plain-text file in the Errata folder.

Have Fun!

Owner
Andrew Glassner
Andrew Glassner
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022