Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Overview

Diverse Image Captioning with Context-Object Split Latent Spaces

This repository is the PyTorch implementation of the paper:

Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Shweta Mahajan and Stefan Roth

We additionally include evaluation code from Luo et al. in the folder GoogleConceptualCaptioning , which has been patched for compatibility.

Requirements

The following code is written in Python 3.6.10 and CUDA 9.0.

Requirements:

  • torch 1.1.0
  • torchvision 0.3.0
  • nltk 3.5
  • inflect 4.1.0
  • tqdm 4.46.0
  • sklearn 0.0
  • h5py 2.10.0

To install requirements:

conda config --add channels pytorch
conda config --add channels anaconda
conda config --add channels conda-forge
conda config --add channels conda-forge/label/cf202003
conda create -n <environment_name> --file requirements.txt
conda activate <environment_name>

Preprocessed data

The dataset used in this project for assessing accuracy and diversity is COCO 2014 (m-RNN split). The full dataset is available here.

We use the Faster R-CNN features for images similar to Anderson et al.. We additionally require "classes"/"scores" fields detected for image regions. The classes correspond to Visual Genome.

Download instructions

Preprocessed training data is available here as hdf5 files. The provided hdf5 files contain the following fields:

  • image_id: ID of the COCO image
  • num_boxes: The proposal regions detected from Faster R-CNN
  • features: ResNet-101 features of the extracted regions
  • classes: Visual genome classes of the extracted regions
  • scores: Scores of the Visual genome classes of the extracted regions

Note that the ["image_id","num_boxes","features"] fields are identical to Anderson et al.

Create a folder named coco and download the preprocessed training and test datasets from the coco folder in the drive link above as follows (it is also possible to directly download the entire coco folder from the drive link):

  1. Download the following files for training on COCO 2014 (m-RNN split):
coco/coco_train_2014_adaptive_withclasses.h5
coco/coco_val_2014_adaptive_withclasses.h5
coco/coco_val_mRNN.txt
coco/coco_test_mRNN.txt
  1. Download the following files for training on held-out COCO (novel object captioning):
coco/coco_train_2014_noc_adaptive_withclasses.h5
coco/coco_train_extra_2014_noc_adaptive_withclasses.h5
  1. Download the following files for testing on held-out COCO (novel object captioning):
coco/coco_test_2014_noc_adaptive_withclasses.h5
  1. Download the (caption) annotation files and place them in a subdirectory coco/annotations (mirroring the Google drive folder structure)
coco/annotations/captions_train2014.json
coco/annotations/captions_val2014.json
  1. Download the following files from the drive link in a seperate folder data (outside coco). These files contain the contextual neighbours for pseudo supervision:
data/nn_final.pkl
data/nn_noc.pkl

For running the train/test scripts (described in the following) "pathToData"/"nn_dict_path" in params.json and params_noc.json needs to be set to the coco/data folder created above.

Verify Folder Structure after Download

The folder structure of coco after data download should be as follows,

coco
 - annotations
   - captions_train2014.json
   - captions_val2014.json
 - coco_val_mRNN.txt
 - coco_test_mRNN.txt
 - coco_train_2014_adaptive_withclasses.h5
 - coco_val_2014_adaptive_withclasses.h5
 - coco_train_2014_noc_adaptive_withclasses.h5
 - coco_train_extra_2014_noc_adaptive_withclasses.h5
 - coco_test_2014_noc_adaptive_withclasses.h5
data
 - coco_classname.txt
 - visual_genome_classes.txt
 - vocab_coco_full.pkl
 - nn_final.pkl
 - nn_noc.pkl

Training

Please follow the following instructions for training:

  1. Set hyperparameters for training in params.json and params_noc.json.
  2. Train a model on COCO 2014 for captioning,
   	python ./scripts/train.py
  1. Train a model for diverse novel object captioning,
   	python ./scripts/train_noc.py

Please note that the data folder provides the required vocabulary.

Memory requirements

The models were trained on a single nvidia V100 GPU with 32 GB memory. 16 GB is sufficient for training a single run.

Pre-trained models and evaluation

We provide pre-trained models for both captioning on COCO 2014 (mRNN split) and novel object captioning. Please follow the following steps:

  1. Download the pre-trained models from here to the ckpts folder.

  2. For evaluation of oracle scores and diversity, we follow Luo et al.. In the folder GoogleConceptualCaptioning download the cider and in the cococaption folder run the download scripts,

   	./GoogleConceptualCaptioning/cococaption/get_google_word2vec_model.sh
   	./GoogleConceptualCaptioning/cococaption/get_stanford_models.sh
   	python ./scripts/eval.py
  1. For diversity evaluation create the required numpy file for consensus re-ranking using,
   	python ./scripts/eval_diversity.py

For consensus re-ranking follow the steps here. To obtain the final diversity scores, follow the instructions of DiversityMetrics. Convert the numpy file to required json format and run the script evalscripts.py

  1. To evaluate the F1 score for novel object captioning,
   	python ./scripts/eval_noc.py

Results

Oracle evaluation on the COCO dataset

B4 B3 B2 B1 CIDEr METEOR ROUGE SPICE
COS-CVAE 0.633 0.739 0.842 0.942 1.893 0.450 0.770 0.339

Diversity evaluation on the COCO dataset

Unique Novel mBLEU Div-1 Div-2
COS-CVAE 96.3 4404 0.53 0.39 0.57

F1-score evaluation on the held-out COCO dataset

bottle bus couch microwave pizza racket suitcase zebra average
COS-CVAE 35.4 83.6 53.8 63.2 86.7 69.5 46.1 81.7 65.0

Bibtex

@inproceedings{coscvae20neurips,
  title     = {Diverse Image Captioning with Context-Object Split Latent Spaces},
  author    = {Mahajan, Shweta and Roth, Stefan},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2020}
}
Owner
Visual Inference Lab @TU Darmstadt
Visual Inference Lab @TU Darmstadt
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023