audioLIME: Listenable Explanations Using Source Separation

Overview

audioLIME

This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music information retrival (MIR). audioLIME is based on the method lime (local interpretable model-agnostic explanations) work presented in this paper and uses source separation estimates in order to create interpretable components.

Citing

If you use audioLIME in your work, please cite it:

@misc{haunschmid2020audiolime,
    title={{audioLIME: Listenable Explanations Using Source Separation}},
    author={Verena Haunschmid and Ethan Manilow and Gerhard Widmer},
    year={2020},
    eprint={2008.00582},
    archivePrefix={arXiv},
    primaryClass={cs.SD},
    howpublished={13th International Workshop on Machine Learning and Music}
}

Publications

audioLIME is introduced/used in the following publications:

  • Verena Haunschmid, Ethan Manilow and Gerhard Widmer, audioLIME: Listenable Explanations Using Source Separation

  • Verena Haunschmid, Ethan Manilow and Gerhard Widmer, Towards Musically Meaningful Explanations Using Source Separation

Installation

The audioLIME package is not on PyPI yet. For installing it, clone the git repo and install it using setup.py.

git clone https://github.com/CPJKU/audioLIME.git  # HTTPS
git clone [email protected]:CPJKU/audioLIME.git  # SSH
cd audioLIME
python setup.py install

To install a version for development purposes check out this article.

Tests

To test your installation, the following test are available:

python -m unittest tests.test_SpleeterFactorization

python -m unittest tests.test_DataProviders

Note on Requirements

To keep it lightweight, not all possible dependencies are contained in setup.py. Depending on the factorization you want to use, you might need different packages, e.g. nussl or spleeter.

Installation & Usage of spleeter

pip install spleeter==2.0.2

When you're using spleeter for the first time, it will download the used model in a directory pretrained_models. You can only change the location by setting an environment variable MODEL_PATH before spleeter is imported. There are different ways to set an environment variable, for example:

export MODEL_PATH=/share/home/verena/experiments/spleeter/pretrained_models/

Available Factorizations

Currently we have the following factorizations implemented:

  • SpleeterFactorization based on the source separation system spleeter (code)
  • SoundLIMEFactorization: time-frequency segmentation based on SoundLIME (the original implementation was not flexible enough for our experiments)

Usage Example

Here we demonstrate how we can explain the prediction of FCN (code, Choi 2016, Won 2020) using SpleeterFactorization.

For this to work you need to install the requirements found in the above mentioned repo of the tagger and spleeter:

pip install -r examples/requirements.txt
    data_provider = RawAudioProvider(audio_path)
    spleeter_factorization = SpleeterFactorization(data_provider,
                                                   n_temporal_segments=10,
                                                   composition_fn=None,
                                                   model_name='spleeter:5stems')

    explainer = lime_audio.LimeAudioExplainer(verbose=True, absolute_feature_sort=False)

    explanation = explainer.explain_instance(factorization=spleeter_factorization,
                                             predict_fn=predict_fn,
                                             top_labels=1,
                                             num_samples=16384,
                                             batch_size=32
                                             )

For the details on setting everything up, see example_using_spleeter_fcn.

Listen to the input and explanation.

TODOs

  • upload to pypi.org (to allow installation via pip)
  • usage example for SoundLIMEFactorization
  • tutorial in form of a Jupyter Notebook
  • more documentation
You might also like...
Offical implementation for
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

Source-to-Source Debuggable Derivatives in Pure Python
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

This repository contains the source code for the paper
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

Releases(v0.0.3)
Owner
Institute of Computational Perception
Johannes Kepler University
Institute of Computational Perception
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022