CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

Related tags

Deep LearningCrossMLP
Overview

Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

CrossMLP

Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation
Bin Ren1, Hao Tang2, Nicu Sebe1.
1University of Trento, Italy, 2ETH, Switzerland.
In BMVC 2021 Oral.
The repository offers the official implementation of our paper in PyTorch.

🦖 News! We have updated the proposed CrossMLP(December 9th, 2021)!

Installation

  • Step1: Create a new virtual environment with anaconda
conda create -n crossmlp python=3.6
  • Step2: Install the required libraries
pip install -r requirement.txt

Dataset Preparation

For Dayton and CVUSA, the datasets must be downloaded beforehand. Please download them on the respective webpages. In addition, we put a few sample images in this code repo data samples. Please cite their papers if you use the data.

Preparing Ablation Dataset. We conduct ablation study in a2g (aerialto-ground) direction on Dayton dataset. To reduce the training time, we randomly select 1/3 samples from the whole 55,000/21,048 samples i.e. around 18,334 samples for training and 7,017 samples for testing. The trianing and testing splits can be downloaded here.

Preparing Dayton Dataset. The dataset can be downloaded here. In particular, you will need to download dayton.zip. Ground Truth semantic maps are not available for this datasets. We adopt RefineNet trained on CityScapes dataset for generating semantic maps and use them as training data in our experiments. Please cite their papers if you use this dataset. Train/Test splits for Dayton dataset can be downloaded from here.

Preparing CVUSA Dataset. The dataset can be downloaded here. After unzipping the dataset, prepare the training and testing data as discussed in our CrossMLP. We also convert semantic maps to the color ones by using this script. Since there is no semantic maps for the aerial images on this dataset, we use black images as aerial semantic maps for placehold purposes.

🌲 Note that for your convenience we also provide download scripts:

bash ./datasets/download_selectiongan_dataset.sh [dataset_name]

[dataset_name] can be:

  • dayton_ablation : 5.7 GB
  • dayton: 17.0 GB
  • cvusa: 1.3 GB

Training

Run the train_crossMlp.sh, whose content is shown as follows

python train.py --dataroot [path_to_dataset] \
	--name [experiment_name] \
	--model crossmlpgan \
	--which_model_netG unet_256 \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm batch \
	--gpu_ids 0 \
	--batchSize [BS] \
	--loadSize [LS] \
	--fineSize [FS] \
	--no_flip \
	--display_id 0 \
	--lambda_L1 100 \
	--lambda_L1_seg 1
  • For dayton or dayton_ablation dataset, [BS,LS,FS]=[4,286,256], set --niter 20 --niter_decay 15
  • For cvusa dataset, [BS,LS,FS]=[4,286,256], set --niter 15 --niter_decay 15

There are many options you can specify. Please use python train.py --help. The specified options are printed to the console. To specify the number of GPUs to utilize, use export CUDA_VISIBLE_DEVICES=[GPU_ID]. Training will cost about 3 days for dayton , less than 2 days for dayton_ablation, and less than 3 days for cvusa with the default --batchSize on one TITAN Xp GPU (12G). So we suggest you use a larger --batchSize, while performance is not tested using a larger --batchSize

To view training results and loss plots on local computers, set --display_id to a non-zero value and run python -m visdom.server on a new terminal and click the URL http://localhost:8097. On a remote server, replace localhost with your server's name, such as http://server.trento.cs.edu:8097.

Testing

Run the test_crossMlp.sh, whose content is shown as follows:

python test.py --dataroot [path_to_dataset] \
--name crossMlp_dayton_ablation \
--model crossmlpgan \
--which_model_netG unet_256 \
--which_direction AtoB \
--dataset_mode aligned \
--norm batch \
--gpu_ids 0 \
--batchSize 8 \
--loadSize 286 \
--fineSize 256 \
--saveDisk  \ 
--no_flip --eval

By default, it loads the latest checkpoint. It can be changed using --which_epoch.

We also provide image IDs used in our paper here for further qualitative comparsion.

Evaluation

Coming soon

Generating Images Using Pretrained Model

Coming soon

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Bin Ren ([email protected]).

Acknowledgments

This source code borrows heavily from Pix2pix and SelectionGAN. We also thank the authors X-Fork & X-Seq for providing the evaluation codes. This work was supported by the EU H2020 AI4Media No.951911project and by the PRIN project PREVUE.

Owner
Bingoren
Bingoren
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022