Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

Overview

IIC2233 - Programación Avanzada

Evaluación

  1. Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la nota del curso NC como:

    NC = 2/3 * T + 1/3 * AC

    Donde T es el promedio ponderado de las tareas y AC es el promedio de las actividades.

    El promedio ponderado de las tareas se calcula de la siguiente manera:

    T = ( 1xT0 + 2×T1 + 3×T2 + 3×T3 ) / 9

    El promedio de las actividades corresponderá a las 4 mejores notas entre actividades sumativas (son 4) y la nota de actividades formativas, que cuenta como una actividad sumativa más:

    AC = ((ACS1 + ACS2 + ACS3 + ACS4 + EF) - mínimo) / 4, dónde mínimo es la peor nota entre las cinco consideradas (ACS1, ACS2, ACS3, ACS4 y EF).

    La nota de actividades formativas AF toma en consideración la participación del estudiante como meta. Consta de cuatro instancias de actividades formativas, donde el trabajo del estudiante será revisado superficialmente y recibirá un puntaje de cumplimiento acorde: 0 (no logrado), 0,5 (medianamente logrado) y 1 (logrado).

    Se considerará la suma de cumplimientos (A) de las cuatro actividades donde el cálculo de EF es:

    EF = 6 x A / 4 + 1, donde A es la suma de cumplimientos en actividades formativas.

  2. Adicionalmente, para aprobar el curso el alumno debe cumplir con:

    • NC debe ser mayor o igual a 3,950
    • AC debe ser mayor o igual a 3,950
    • T debe ser mayor o igual a 3,950
  3. Este semestre el curso participará de la Encuesta de Carga Académica (ECA), con el objetivo de medir la carga que conlleva el curso y adaptarlo en esta y futuras versiones del curso.

    Para incentivar que a que los estudiantes la respondan, se entregará una bonificación que tendrá efecto en el promedio final del curso, siempre que se cumplan los criterios de aprobación nombrados en el punto anterior.

    Dependiendo de la cantidad de alumnos que responda la ECA cada semana, se podrá ganar:

    • 0,2 décimas: si el alumno responde la ECA y por lo menos el 80% del curso responde la encuesta esa semana.
    • 0,1 décimas: si el alumno responde la ECA y menos del 80% del curso responde la encuesta esa semana.
    • 0 décimas: en cualquier otro caso.

    En total se realizarán 15 encuestas, por lo que, si un estudiante responde todas las ECAs, tendrá una bonificación de 1,5 décimas en su promedio final (si cumple los criterios de aprobación).

  4. Si el alumno cumple con las condiciones nombradas en el punto 2, entonces NF = NC + Décimas ECA. En caso contrario, NF = min(3,9; NC)

  5. La inasistencia a alguna de las evaluaciones (actividades sumativas) se evalúa con nota 1,0.

  6. Solo será aproximada la nota final NF. El resto de las notas serán usadas con dos decimales.

  7. Las notas de todas las evaluaciónes se publicarán en esta planilla (link pendiente). Solo se puede acceder con cuenta UC, no se dará acceso a ninguna otra cuenta.

Recorrección

Para recorregir alguna evaluación, se publicará oportunamente un formulario en el que tendrán que exponer sus motivos.

No se aceptarán recorrecciones del tipo: "Creo que merezco más nota" sin que haya alguna justificación de por medio.

Entregas atrasadas

Deben contestar un formulario que se habilitará en el debido momento. Se recomienda revisar el documento de entregas atrasadas para más detalles.

Foro

La página de Issues se utilizará como foro para preguntas.

Semestres Anteriores

Puedes ver los syllabus de los semestres anteriores en:

Otros

Los contenidos, ayudantes, calendario, cuestionario de recorrecciones y material se encuentran en este link.

Owner
IIC2233 @ UC
IIC2233 Programación Avanzada @ Pontificia Universidad Católica de Chile
IIC2233 @ UC
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022