Data Preparation, Processing, and Visualization for MoVi Data

Overview

MoVi-Toolbox

Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/

MoVi is a large multipurpose dataset of human motion and video.

Here we provide tools and tutorials to use MoVi in your research projects. More specifically:

Table of Contents

Installation

Requirements

  • Python 3.*
  • MATLAB v>2017

In case you are interested in using body shape data (or also AMASS/MoVi original data) follow the instructions on AMASS Github page.

Tutorials

  • We have provided very brief tutorials on how to use the dataset in MoCap. Some of the functions are only provided in MATLAB or Python so please take a look at both tutorial files tutorial_MATLAB.m and tutorial_python.ipynb.

  • The tutorial on how to have access to the dataset is given here.

Important Notes

  • The video data for each round are provided as a single sequence (and not individual motions). In case you are interested in having synchronized video and AMASS (joint and body) data, you should trim F_PGx_Subject_x_L.avi files into single motion video files using single_videos.m function.
  • The timestamps (which separate motions) are provided by the name of “flags” in V3D files (only for f and s rounds). Please notice that “flags30” can be used for video data and “flags120” can be used for mocap data. The reason for having two types of flags is that video data were recorded in 30 fps and mocap data were recorded in 120 fps.
  • The body mesh is not provided in AMASS files by default. Please use amass_fk function to augment AMASS data with the corresponding body mesh (vertices). (the details are explained in the tutorial_python.ipynb)

Citation

Please cite the following paper if you use this code directly or indirectly in your research/projects:

@misc{ghorbani2020movi,
    title={MoVi: A Large Multipurpose Motion and Video Dataset},
    author={Saeed Ghorbani and Kimia Mahdaviani and Anne Thaler and Konrad Kording and Douglas James Cook and Gunnar Blohm and Nikolaus F. Troje},
    year={2020},
    eprint={2003.01888},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

License

Software Copyright License for non-commercial scientific research purposes. Before you download and/or use the Motion and Video (MoVi) dataset, please carefully read the terms and conditions stated on our website and in any accompanying documentation. If you are using the part of the dataset that was post-processed as part of AMASS, you must follow all their terms and conditions as well. By downloading and/or using the data or the code (including downloading, cloning, installing, and any other use of this GitHub repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the MoVi dataset and any associated code and software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Contact

The code in this repository is developed by Saeed Ghorbani.

If you have any questions you can contact us at [email protected].

Owner
Saeed Ghorbani
Graduate student in EECS department at York University
Saeed Ghorbani
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
yufan 81 Dec 08, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022