Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Overview

Neural Descriptor Fields (NDF)

PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and using these descriptor fields to mimic demonstrations of a pick-and-place task on a robotic system

drawing


This is the reference implementation for our paper:

Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation

drawing drawing

PDF | Video

Anthony Simeonov*, Yilun Du*, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit Agrawal**, Vincent Sitzmann** (*Equal contribution, order determined by coin flip. **Equal advising)


Google Colab

If you want a quickstart demo of NDF without installing anything locally, we have written a Colab. It runs the same demo as the Quickstart Demo section below where a local coordinate frame near one object is sampled, and the corresponding local frame near a new object (with a different shape and pose) is recovered via our energy optimization procedure.


Setup

Clone this repo

git clone --recursive https://github.com/anthonysimeonov/ndf_robot.git
cd ndf_robot

Install dependencies (using a virtual environment is highly recommended):

pip install -e .

Setup additional tools (Franka Panda inverse kinematics -- unnecessary if not using simulated robot for evaluation):

cd pybullet-planning/pybullet_tools/ikfast/franka_panda
python setup.py

Setup environment variables (this script must be sourced in each new terminal where code from this repository is run)

source ndf_env.sh

Quickstart Demo

Download pretrained weights

./scripts/download_demo_weights.sh

Download data assets

./scripts/download_demo_data.sh

Run example script

cd src/ndf_robot/eval
python ndf_demo.py

The code in the NDFAlignmentCheck class in the file src/ndf_robot/eval/ndf_alignment.py contains a minimal implementation of our SE(3)-pose energy optimization procedure. This is what is used in the Quickstart demo above. For a similar implementation that is integrated with our pick-and-place from demonstrations pipeline, see src/ndf_robot/opt/optimizer.py

Training

Download all data assets

If you want the full dataset (~150GB for 3 object classes):

./scripts/download_training_data.sh 

If you want just the mug dataset (~50 GB -- other object class data can be downloaded with the according scripts):

./scripts/download_mug_training_data.sh 

If you want to recreate your own dataset, see Data Generation section

Run training

cd src/ndf_robot/training
python train_vnn_occupancy_net.py --obj_class all --experiment_name  ndf_training_exp

More information on training here

Evaluation with simulated robot

Make sure you have set up the additional inverse kinematics tools (see Setup section)

Download all the object data assets

./scripts/download_obj_data.sh

Download pretrained weights

./scripts/download_demo_weights.sh

Download demonstrations

./scripts/download_demo_demonstrations.sh

Run evaluation

If you are running this command on a remote machine, be sure to remove the --pybullet_viz flag!

cd src/ndf_robot/eval
CUDA_VISIBLE_DEVICES=0 python evaluate_ndf.py \
        --demo_exp grasp_rim_hang_handle_gaussian_precise_w_shelf \
        --object_class mug \
        --opt_iterations 500 \
        --only_test_ids \
        --rand_mesh_scale \
        --model_path multi_category_weights \
        --save_vis_per_model \
        --config eval_mug_gen \
        --exp test_mug_eval \
        --pybullet_viz

More information on experimental evaluation can be found here.

Data Generation

Download all the object data assets

./scripts/download_obj_data.sh

Run data generation

cd src/ndf_robot/data_gen
python shapenet_pcd_gen.py \
    --total_samples 100 \
    --object_class mug \
    --save_dir test_mug \
    --rand_scale \
    --num_workers 2

More information on dataset generation can be found here.

Collect new demonstrations with teleoperated robot in PyBullet

Make sure you have downloaded all the object data assets (see Data Generation section)

Run teleoperation pipeline

cd src/ndf_robot/demonstrations
python label_demos.py --exp test_bottle --object_class bottle --with_shelf

More information on collecting robot demonstrations can be found here.

Citing

If you find our paper or this code useful in your work, please cite our paper:

@article{simeonovdu2021ndf,
  title={Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation},
  author={Simeonov, Anthony and Du, Yilun and Tagliasacchi, Andrea and Tenenbaum, Joshua B. and Rodriguez, Alberto and Agrawal, Pulkit and Sitzmann, Vincent},
  journal={arXiv preprint arXiv:2112.05124},
  year={2021}
}

Acknowledgements

Parts of this code were built upon the implementations found in the occupancy networks repo and the vector neurons repo. Check out their projects as well!

The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022