Must-read Papers on Physics-Informed Neural Networks.

Overview

PINNpapers

Contributed by IDRL lab.

Introduction

Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017. In this repo, we list some representative work on PINNs. Feel free to distribute or use it!

Corrections and suggestions are welcomed.

A script for converting bibtex to the markdown used in this repo is also provided for your convenience.

Software

  1. DeepXDE: A Deep Learning Library for Solving Differential Equations, Lu Lu, Xuhui Meng, Zhiping Mao, George Em Karniadakis, SIAM Review, 2021. [paper][code]
  2. NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework, Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subramaniam, Kaustubh Tangsali, Zhiwei Fang, Max Rietmann, Wonmin Byeon, Sanjay Choudhry, ICCS, 2021. [paper]
  3. SciANN: A Keras wrapper for scientific computations and physics-informed deep learning using artificial neural networks, Ehsan Haghighat, Ruben Juanes, arXiv preprint arXiv:2005.08803, 2020. [paper][code]
  4. Elvet -- a neural network-based differential equation and variational problem solver, Jack Y. Araz, Juan Carlos Criado, Michael Spannowsky, arXiv:2103.14575 [hep-lat, physics:hep-ph, physics:hep-th, stat], 2021. [paper][code]
  5. TensorDiffEq: Scalable Multi-GPU Forward and Inverse Solvers for Physics Informed Neural Networks, Levi D. McClenny, Mulugeta A. Haile, Ulisses M. Braga-Neto, arXiv:2103.16034 [physics], 2021. [paper][code]
  6. PyDEns: a Python Framework for Solving Differential Equations with Neural Networks, Alex Koryagin, er, Roman Khudorozkov, Sergey Tsimfer, arXiv:1909.11544 [cs, stat], 2019. [paper][code]
  7. NeuroDiffEq: A Python package for solving differential equations with neural networks, Feiyu Chen, David Sondak, Pavlos Protopapas, Marios Mattheakis, Shuheng Liu, Devansh Agarwal, Marco Di Giovanni, Journal of Open Source Software, 2020. [paper][code]
  8. Universal Differential Equations for Scientific Machine Learning, Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic Skinner, Ali Ramadhan, Alan Edelman, arXiv:2001.04385 [cs, math, q-bio, stat], 2020. [paper][code]
  9. NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations, Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, N Vinchhi, , Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas, arXiv:2107.09443 [cs], 2021. [paper][code]
  10. IDRLnet: A Physics-Informed Neural Network Library, Wei Peng, Jun Zhang, Weien Zhou, Xiaoyu Zhao, Wen Yao, Xiaoqian Chen, arXiv:2107.04320 [cs, math], 2021. [paper][code]

Papers on PINN Models

  1. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, M. Raissi, P. Perdikaris, G. E. Karniadakis, Journal of Computational Physics, 2019. [paper]
  2. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, E Weinan, Bing Yu, Communications in Mathematics and Statistics, 2018. [paper]
  3. DGM: A deep learning algorithm for solving partial differential equations, Justin Sirignano, Konstantinos Spiliopoulos, Journal of Computational Physics, 2018. [paper]
  4. SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs, Amuthan A. Ramabathiran, Ramach, Prabhu ran, Journal of Computational Physics, 2021. [paper][code]
  5. Deep neural network methods for solving forward and inverse problems of time fractional diffusion equations with conformable derivative, Yinlin Ye, Yajing Li, Hongtao Fan, Xinyi Liu, Hongbing Zhang, arXiv:2108.07490 [cs, math], 2021. [paper]
  6. NH-PINN: Neural homogenization based physics-informed neural network for multiscale problems, Wing Tat Leung, Guang Lin, Zecheng Zhang, arXiv:2108.12942 [cs, math], 2021. [paper][code]

Papers on Parallel PINN

  1. Parallel Physics-Informed Neural Networks via Domain Decomposition, Khemraj Shukla, Ameya D. Jagtap, George Em Karniadakis, arXiv:2104.10013 [cs], 2021. [paper]
  2. Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, Ben Moseley, Andrew Markham, Tarje Nissen-Meyer, arXiv:2107.07871 [physics], 2021. [paper]
  3. PPINN: Parareal physics-informed neural network for time-dependent PDEs, Xuhui Meng, Zhen Li, Dongkun Zhang, George Em Karniadakis, Computer Methods in Applied Mechanics and Engineering, 2020. [paper]

Papers on PINN Accerleration

  1. Self-adaptive loss balanced Physics-informed neural networks for the incompressible Navier-Stokes equations, Zixue Xiang, Wei Peng, Xiaohu Zheng, Xiaoyu Zhao, Wen Yao, arXiv:2104.06217 [physics], 2021. [paper]
  2. A Dual-Dimer method for training physics-constrained neural networks with minimax architecture, Dehao Liu, Yan Wang, Neural Networks, 2021. [paper]
  3. Adversarial Multi-task Learning Enhanced Physics-informed Neural Networks for Solving Partial Differential Equations, Pongpisit Thanasutives, Masayuki Numao, Ken-ichi Fukui, arXiv:2104.14320 [cs, math], 2021. [paper]
  4. DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation, Jungeun Kim, Kookjin Lee, Dongeun Lee, Sheo Yon Jin, Noseong Park, AAAI, 2021. [paper]

Papers on Model Transfer & Meta-Learning

  1. A physics-aware learning architecture with input transfer networks for predictive modeling, Amir Behjat, Chen Zeng, Rahul Rai, Ion Matei, David Doermann, Souma Chowdhury, Applied Soft Computing, 2020. [paper]
  2. Transfer learning based multi-fidelity physics informed deep neural network, Souvik Chakraborty, Journal of Computational Physics, 2021. [paper]
  3. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture, Somdatta Goswami, Cosmin Anitescu, Souvik Chakraborty, Timon Rabczuk, Theoretical and Applied Fracture Mechanics, 2020. [paper]
  4. Meta-learning PINN loss functions, Apostolos F. Psaros, Kenji Kawaguchi, George Em Karniadakis, arXiv:2107.05544 [cs], 2021. [paper]

Papers on Probabilistic PINNs and Uncertainty Quantification

  1. A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime, Constantin Grigo, Phaedon-Stelios Koutsourelakis, Journal of Computational Physics, 2019. [paper]
  2. Adversarial uncertainty quantification in physics-informed neural networks, Yibo Yang, Paris Perdikaris, Journal of Computational Physics, 2019. [paper]
  3. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data, Liu Yang, Xuhui Meng, George Em Karniadakis, Journal of Computational Physics, 2021. [paper]
  4. PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics, Arka Daw, M. Maruf, Anuj Karpatne, arXiv:2106.02993 [cs, stat], 2021. [paper]
  5. Quantifying Uncertainty in Physics-Informed Variational Autoencoders for Anomaly Detection, Marcus J. Neuer, ESTEP, 2020. [paper]
  6. A Physics-Data-Driven Bayesian Method for Heat Conduction Problems, Xinchao Jiang, Hu Wang, Yu li, arXiv:2109.00996 [cs, math], 2021. [paper][code]
  7. Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks, Yihang Gao, Michael K. Ng, arXiv:2108.13054 [cs, math], 2021. [paper][code]

Papers on Applications

  1. Physics-informed neural networks for high-speed flows, Zhiping Mao, Ameya D. Jagtap, George Em Karniadakis, Computer Methods in Applied Mechanics and Engineering, 2020. [paper]
  2. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data, Luning Sun, Han Gao, Shaowu Pan, Jian-Xun Wang, Computer Methods in Applied Mechanics and Engineering, 2020. [paper]
  3. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations, Maziar Raissi, Alireza Yazdani, George Em Karniadakis, Science, 2020. [paper]
  4. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations, Xiaowei Jin, Shengze Cai, Hui Li, George Em Karniadakis, Journal of Computational Physics, 2021. [paper]
  5. A High-Efficient Hybrid Physics-Informed Neural Networks Based on Convolutional Neural Network, Zhiwei Fang, IEEE Transactions on Neural Networks and Learning Systems, 2021. [paper]
  6. A Study on a Feedforward Neural Network to Solve Partial Differential Equations in Hyperbolic-Transport Problems, Eduardo Abreu, Joao B. Florindo, ICCS, 2021. [paper]
  7. A Physics Informed Neural Network Approach to Solution and Identification of Biharmonic Equations of Elasticity, Mohammad Vahab, Ehsan Haghighat, Maryam Khaleghi, Nasser Khalili, arXiv:2108.07243 [cs], 2021. [paper]
  8. Prediction of porous media fluid flow using physics informed neural networks, Muhammad M. Almajid, Moataz O. Abu-Alsaud, Journal of Petroleum Science and Engineering, 2021. [paper]
  9. Investigating a New Approach to Quasinormal Modes: Physics-Informed Neural Networks, Anele M. Ncube, Gerhard E. Harmsen, Alan S. Cornell, arXiv:2108.05867 [gr-qc], 2021. [paper]
  10. Towards neural Earth system modelling by integrating artificial intelligence in Earth system science, Christopher Irrgang, Niklas Boers, Maike Sonnewald, Elizabeth A. Barnes, Christopher Kadow, Joanna Staneva, Jan Saynisch-Wagner, Nature Machine Intelligence, 2021. [paper]
  11. Physics-informed Neural Network for Nonlinear Dynamics in Fiber Optics, Xiaotian Jiang, Danshi Wang, Qirui Fan, Min Zhang, Chao Lu, Alan Pak Tao Lau, arXiv:2109.00526 [physics], 2021. [paper][code]

Papers on PINN Analysis

  1. Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs, Siddhartha Mishra, Roberto Molinaro, IMA Journal of Numerical Analysis, 2021. [paper]
  2. Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs, Tim De Ryck, Siddhartha Mishra, arXiv:2106.14473 [cs, math], 2021. [paper]
  3. Error Analysis of Deep Ritz Methods for Elliptic Equations, Yuling Jiao, Yanming Lai, Yisu Luo, Yang Wang, Yunfei Yang, arXiv:2107.14478 [cs, math], 2021. [paper]
Owner
IDRL
Intelligent Design and Robust Learning Laboratory
IDRL
Scripts used to make and evaluate OpenAlex's concept tagging model

openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model

OurResearch 18 Dec 09, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022