3D cascade RCNN for object detection on point cloud

Overview

3D Cascade RCNN

This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds.

We designed a 3D object detection model on point clouds by:

  • Presenting a simple yet effective 3D cascade architecture
  • Analyzing the sparsity of the point clouds and using point completeness score to re-weighting training samples. Following is detection results on Waymo Open Dataset.

Results on KITTI

Easy Car Moderate Car Hard Car
AP 11 90.05 86.02 79.27
AP 40 93.20 86.19 83.48

Results on Waymo

Overall Vehicle 0-30m Vehicle 30-50m Vehicle 50m-Inf Vehicle
LEVEL_1 mAP 76.27 92.66 74.99 54.49
LEVEL_2 mAP 67.12 91.95 68.96 41.82

Installation

  1. Requirements. The code is tested on the following environment:
  • Ubuntu 16.04 with 4 V100 GPUs
  • Python 3.7
  • Pytorch 1.7
  • CUDA 10.1
  • spconv 1.2.1
  1. Build extensions
python setup.py develop

Getting Started

Prepare for the data.

Please download the official KITTI dataset and generate data infos by following command:

python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/kitti_dataset.yaml

The folder should be like:

data
├── kitti
│   │── ImageSets
│   │── training
│   │   ├──calib & velodyne & label_2 & image_2
│   │── testing
│   │   ├──calib & velodyne & image_2
|   |── kitti_dbinfos_train.pkl
|   |── kitti_infos_train.pkl
|   |── kitti_infos_val.pkl

Training and evaluation.

The configuration file is in tools/cfgs/3d_cascade_rcnn.yaml, and the training scripts is in tools/scripts.

cd tools
sh scripts/3d-cascade-rcnn.sh

Test a pre-trained model

The pre-trained KITTI model is at: model. Run with:

cd tools
sh scripts/3d-cascade-rcnn_test.sh

The evaluation results should be like:

2021-08-10 14:06:14,608   INFO  Car [email protected], 0.70, 0.70:
bbox AP:97.9644, 90.1199, 89.7076
bev  AP:90.6405, 89.0829, 88.4391
3d   AP:90.0468, 86.0168, 79.2661
aos  AP:97.91, 90.00, 89.48
Car [email protected], 0.70, 0.70:
bbox AP:99.1663, 95.8055, 93.3149
bev  AP:96.3107, 92.4128, 89.9473
3d   AP:93.1961, 86.1857, 83.4783
aos  AP:99.13, 95.65, 93.03
Car [email protected], 0.50, 0.50:
bbox AP:97.9644, 90.1199, 89.7076
bev  AP:98.0539, 97.1877, 89.7716
3d   AP:97.9921, 90.1001, 89.7393
aos  AP:97.91, 90.00, 89.48
Car [email protected], 0.50, 0.50:
bbox AP:99.1663, 95.8055, 93.3149
bev  AP:99.1943, 97.8180, 95.5420
3d   AP:99.1717, 95.8046, 95.4500
aos  AP:99.13, 95.65, 93.03

Acknowledge

The code is built on OpenPCDet and Voxel R-CNN.

Owner
Qi Cai
Qi Cai
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022