3D cascade RCNN for object detection on point cloud

Overview

3D Cascade RCNN

This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds.

We designed a 3D object detection model on point clouds by:

  • Presenting a simple yet effective 3D cascade architecture
  • Analyzing the sparsity of the point clouds and using point completeness score to re-weighting training samples. Following is detection results on Waymo Open Dataset.

Results on KITTI

Easy Car Moderate Car Hard Car
AP 11 90.05 86.02 79.27
AP 40 93.20 86.19 83.48

Results on Waymo

Overall Vehicle 0-30m Vehicle 30-50m Vehicle 50m-Inf Vehicle
LEVEL_1 mAP 76.27 92.66 74.99 54.49
LEVEL_2 mAP 67.12 91.95 68.96 41.82

Installation

  1. Requirements. The code is tested on the following environment:
  • Ubuntu 16.04 with 4 V100 GPUs
  • Python 3.7
  • Pytorch 1.7
  • CUDA 10.1
  • spconv 1.2.1
  1. Build extensions
python setup.py develop

Getting Started

Prepare for the data.

Please download the official KITTI dataset and generate data infos by following command:

python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/kitti_dataset.yaml

The folder should be like:

data
├── kitti
│   │── ImageSets
│   │── training
│   │   ├──calib & velodyne & label_2 & image_2
│   │── testing
│   │   ├──calib & velodyne & image_2
|   |── kitti_dbinfos_train.pkl
|   |── kitti_infos_train.pkl
|   |── kitti_infos_val.pkl

Training and evaluation.

The configuration file is in tools/cfgs/3d_cascade_rcnn.yaml, and the training scripts is in tools/scripts.

cd tools
sh scripts/3d-cascade-rcnn.sh

Test a pre-trained model

The pre-trained KITTI model is at: model. Run with:

cd tools
sh scripts/3d-cascade-rcnn_test.sh

The evaluation results should be like:

2021-08-10 14:06:14,608   INFO  Car [email protected], 0.70, 0.70:
bbox AP:97.9644, 90.1199, 89.7076
bev  AP:90.6405, 89.0829, 88.4391
3d   AP:90.0468, 86.0168, 79.2661
aos  AP:97.91, 90.00, 89.48
Car [email protected], 0.70, 0.70:
bbox AP:99.1663, 95.8055, 93.3149
bev  AP:96.3107, 92.4128, 89.9473
3d   AP:93.1961, 86.1857, 83.4783
aos  AP:99.13, 95.65, 93.03
Car [email protected], 0.50, 0.50:
bbox AP:97.9644, 90.1199, 89.7076
bev  AP:98.0539, 97.1877, 89.7716
3d   AP:97.9921, 90.1001, 89.7393
aos  AP:97.91, 90.00, 89.48
Car [email protected], 0.50, 0.50:
bbox AP:99.1663, 95.8055, 93.3149
bev  AP:99.1943, 97.8180, 95.5420
3d   AP:99.1717, 95.8046, 95.4500
aos  AP:99.13, 95.65, 93.03

Acknowledge

The code is built on OpenPCDet and Voxel R-CNN.

Owner
Qi Cai
Qi Cai
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023