Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Overview

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Demo | Project Page | Video | Paper

Shangzhe Wu, Christian Rupprecht, Andrea Vedaldi, Visual Geometry Group, University of Oxford. In CVPR 2020 (Best Paper Award).

We propose a method to learn weakly symmetric deformable 3D object categories from raw single-view images, without ground-truth 3D, multiple views, 2D/3D keypoints, prior shape models or any other supervision.

Setup (with Anaconda)

1. Install dependencies:

conda env create -f environment.yml

OR manually:

conda install -c conda-forge scikit-image matplotlib opencv moviepy pyyaml tensorboardX

2. Install PyTorch:

conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 -c pytorch

Note: The code is tested with PyTorch 1.2.0 and CUDA 9.2 on CentOS 7. A GPU version is required for training and testing, since the neural_renderer package only has GPU implementation. You are still able to run the demo without GPU.

3. Install neural_renderer:

This package is required for training and testing, and optional for the demo. It requires a GPU device and GPU-enabled PyTorch.

pip install neural_renderer_pytorch

Note: It may fail if you have a GCC version below 5. If you do not want to upgrade your GCC, one alternative solution is to use conda's GCC and compile the package from source. For example:

conda install gxx_linux-64=7.3
git clone https://github.com/daniilidis-group/neural_renderer.git
cd neural_renderer
python setup.py install

4. (For demo only) Install facenet-pytorch:

This package is optional for the demo. It allows automatic human face detection.

pip install facenet-pytorch

Datasets

  1. CelebA face dataset. Please download the original images (img_celeba.7z) from their website and run celeba_crop.py in data/ to crop the images.
  2. Synthetic face dataset generated using Basel Face Model. This can be downloaded using the script download_synface.sh provided in data/.
  3. Cat face dataset composed of Cat Head Dataset and Oxford-IIIT Pet Dataset (license). This can be downloaded using the script download_cat.sh provided in data/.
  4. Synthetic car dataset generated from ShapeNet cars. The images are rendered from with random viewpoints from the top, where the cars are primarily oriented vertically. This can be downloaded using the script download_syncar.sh provided in data/.

Please remember to cite the corresponding papers if you use these datasets.

Pretrained Models

Download pretrained models using the scripts provided in pretrained/, eg:

cd pretrained && sh download_pretrained_celeba.sh

Demo

python -m demo.demo --input demo/images/human_face --result demo/results/human_face --checkpoint pretrained/pretrained_celeba/checkpoint030.pth

Options:

  • --gpu: enable GPU
  • --detect_human_face: enable automatic human face detection and cropping using MTCNN provided in facenet-pytorch. This only works on human face images. You will need to manually crop the images for other objects.
  • --render_video: render 3D animations using neural_renderer (GPU is required)

Training and Testing

Check the configuration files in experiments/ and run experiments, eg:

python run.py --config experiments/train_celeba.yml --gpu 0 --num_workers 4

Citation

@InProceedings{Wu_2020_CVPR,
  author = {Shangzhe Wu and Christian Rupprecht and Andrea Vedaldi},
  title = {Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild},
  booktitle = {CVPR},
  year = {2020}
}
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022