DiffStride: Learning strides in convolutional neural networks

Overview

DiffStride: Learning strides in convolutional neural networks

Overview

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initialized with an arbitrary value at each layer (e.g. (2, 2) and during training its strides will be optimized for the task at hand.

We describe DiffStride in our ICLR 2022 paper Learning Strides in Convolutional Neural Network. Compared to the experiments described in the paper, this implementation uses a Pre-Act Resnet and uses Mixup in training.

Installation

To install the diffstride library, run the following pip git clone this repo:

git clone https://github.com/google-research/diffstride.git

The cd into the root and run the command:

pip install -e .

Example training

To run an example training on CIFAR10 and save the result in TensorBoard:

python3 -m diffstride.examples.main \
  --gin_config=cifar10.gin \
  --gin_bindings="train.workdir = '/tmp/exp/diffstride/resnet18/'"

Using custom parameters

This implementation uses Gin to parametrize the model, data processing and training loop. To use custom parameters, one should edit examples/cifar10.gin.

For example, to train with SpectralPooling on cifar100:

data.load_datasets:
  name = 'cifar100'

resnet.Resnet:
  pooling_cls = @pooling.FixedSpectralPooling

Or to train with strided convolutions and without Mixup:

data.load_datasets:
  mixup_alpha = 0.0

resnet.Resnet:
  pooling_cls = None

Results

This current implementation gives the following accuracy on CIFAR-10 and CIFAR-100, averaged over three runs. To show the robustness of DiffStride to stride initialization, we run both with the standard strides of ResNet (resnet.resnet18.strides = '1, 1, 2, 2, 2') and with a 'poor' choice of strides (resnet.resnet18.strides = '1, 1, 3, 2, 3'). Unlike Strided Convolutions and fixed Spectral Pooling, DiffStride is not affected by the stride initialization.

CIFAR-10

Pooling Test Accuracy (%) w/ strides = (1, 1, 2, 2, 2) Test Accuracy (%) w/ strides = (1, 1, 3, 2, 3)
Strided Convolution (Baseline) 91.06 ± 0.04 89.21 ± 0.27
Spectral Pooling 93.49 ± 0.05 92.00 ± 0.08
DiffStride 94.20 ± 0.06 94.19 ± 0.15

CIFAR-100

Pooling Test Accuracy (%) w/ strides = (1, 1, 2, 2, 2) Test Accuracy (%) w/ strides = (1, 1, 3, 2, 3)
Strided Convolution (Baseline) 65.75 ± 0.39 60.82 ± 0.42
Spectral Pooling 72.86 ± 0.23 67.74 ± 0.43
DiffStride 76.08 ± 0.23 76.09 ± 0.06

CPU/GPU Warning

We rely on the tensorflow FFT implementation which requires the input data to be in the channels_first format. This is usually not the regular data format of most datasets (including CIFAR) and running with channels_first also prevents from using of convolutions on CPU. Therefore even if we do support channels_last data format for CPU compatibility , we do encourage the user to run with channels_first data format on GPU.

Reference

If you use this repository, please consider citing:

@article{riad2022diffstride,
  title={Learning Strides in Convolutional Neural Networks},
  author={Riad, Rachid and Teboul, Olivier and Grangier, David and Zeghidour, Neil},
  journal={ICLR},
  year={2022}
}

Disclainer

This is not an official Google product.

Owner
Google Research
Google Research
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 07, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023