This repository contains tutorials for the py4DSTEM Python package

Overview
Comments
  • Binder dev

    Binder dev

    • Binder link created, currently lands in Index.ipynb
    • data loaded as part of the notebooks, running all cells on notebooks inside binder will work.
    • Added file_getter.py which takes command-line arguments, which makes extending the download to more notebooks fairly straightforward.
    • Both notebooks work, make_probe_templates.ipynb required adding some clean-up steps to avoid going over 2GB ram limit, the alternative is to split them into more separate notebooks.
    • There's a slight issue that if people don't shutdown notebooks properly or if they have multiple notebooks over, they may cause kernel panics, both notebooks peak memory usage push the 2GB limit .
    • I haven't given much attention to style or formatting currently just wanted to get something functional and working to see if works as required.
    opened by alex-rakowski 1
  • SSB tutorial notebooks with new dataset

    SSB tutorial notebooks with new dataset

    These are two new tutorial notebooks I updated. One is for single-run reconstruction, the other is for interactive mode with ipywidgets and matplotlib visualization.

    opened by PhilippPelz 0
  • Binder dev

    Binder dev

    • Binder link created, currently lands in Index.ipynb
    • data loaded as part of the notebooks, running all cells on notebooks inside binder will work.
    • Added file_getter.py which takes command-line arguments, which makes extending the download to more notebooks fairly straightforward.
    • Both notebooks work, make_probe_templates.ipynb required adding some clean-up steps to avoid going over 2GB ram limit, the alternative is to split them into more separate notebooks.
    • There's a slight issue that if people don't shutdown notebooks properly or if they have multiple notebooks over, they may cause kernel panics, both notebooks peak memory usage push the 2GB limit .
    • I haven't given much attention to style or formatting currently just wanted to get something functional and working to see if works as required.
    opened by alex-rakowski 0
  • Add simulations for dynamical scattering

    Add simulations for dynamical scattering

    I found that there is almost no proper documentation for the dynamical scattering simulation in py4DSTEM unless you read the source code (actually I couldn't find the documentation for the whole diffraction module). So I created a tutorial using NaCl as an example. Hope I have done it right.

    opened by Taimin 0
  • py4DSTEM.process.virtualimage.get_virtualimage_circ (strain mapping tutorial)

    py4DSTEM.process.virtualimage.get_virtualimage_circ (strain mapping tutorial)

    in the strain mapping tutorial, this step doesn't work !

    [12]

    Next, create a BF virtual detector using the the center beam position (qxy0, qy0)

    We will expand the BF radius slightly (+ 2 px).

    The DF virtual detector can be set to all remaining pixels.

    expand_BF = 2.0 image_BF = py4DSTEM.process.virtualimage.get_virtualimage_circ( dataset, qx0, qy0, probe_semiangle + expand_BF) image_DF = py4DSTEM.process.virtualimage.get_virtualimage_ann( dataset, qx0, qy0, probe_semiangle + expand_BF, 1e3)

    [return]

    AttributeError Traceback (most recent call last) Input In [168], in <cell line: 5>() 1 # Next, create a BF virtual detector using the the center beam position (qxy0, qy0) 2 # We will expand the BF radius slightly (+ 2 px). 3 # The DF virtual detector can be set to all remaining pixels. 4 expand_BF = 2.0 ----> 5 image_BF = py4DSTEM.process.get_virtualimage_circ( 6 dataset, 7 qx0, qy0, 8 probe_semiangle + expand_BF) 9 image_DF = py4DSTEM.process.virtualimage.get_virtualimage_ann( 10 dataset, 11 qx0, qy0, 12 probe_semiangle + expand_BF, 13 1e3)

    AttributeError: module 'py4DSTEM.process' has no attribute 'get_virtualimage_circ'

    Any tips to fix that ?

    py4DSTEM.process.virtualimage.virtualimage.get_virtualimage_circ or py4DSTEM.process.virtualimage.get_virtualimage_circ ?

    opened by lylofu 0
  • ACOM_03_Au_NP_sim.ipynb bugs

    ACOM_03_Au_NP_sim.ipynb bugs

    Running the ACOM_03 notebook as downloaded, cell 25 gives the following error:

    ---------------------------------------------------------------------------
    NameError                                 Traceback (most recent call last)
    /var/folders/ts/tq6v7mks7hvg37ys5zvs1c2w0000gn/T/ipykernel_3012/3733081456.py in <module>
         14 
         15 # Fit an ellipse to the elliptically corrected bvm
    ---> 16 qx0_corr,qy0_corr,a_corr,e_corr,theta_corr = py4DSTEM.process.calibration.fit_ellipse_1D(bvm_ellipsecorr,(qx0,qy0),(qmin,qmax))
         17 
         18 py4DSTEM.visualize.show_elliptical_fit(
    
    NameError: name 'qmin' is not defined
    

    I think someone changed qmin, qmax to be a list called qrange and never actually tested the notebook in a fresh state.

    opened by sezelt 0
  • AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    When I run the "ACOM Tutorial Notebook 01", it gives a following error message.

    AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    version python 3.8.0 py4DSTEM 0.12.6 pywin32 302

    error

    opened by nomurayuki0503 0
Releases(v0.13.8-alpha)
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022