Pytorch implementation for M^3L

Related tags

Deep LearningM3L
Overview

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021)

Introduction

This is the Pytorch implementation for M3L.

Requirements

  • CUDA>=10.0

  • At least three 2080-Ti GPUs

  • Other necessary packages listed in requirements.txt

  • Training Data

    The model is trained and evaluated on Market-1501, DukeMTMC-reID, MSMT17_V1, MSMT17_V2, CUHK03 and CUHK-NP

    Note:

    For CUHK03 dataset, we use the old protocol (CUHK03) as the source domain for training the model and the detected subset of the new protocol (CUHK-NP) as the target domain for evaluation.

    For MSMT17, we use the MSMT17_V2 for both training and testing.

    We recommend using the detected subset of CUHK-NP and MSMT17_V1 for both training and testing and we will add the results with them at a later date.

    Unzip all datasets and ensure the file structure is as follow:

    data    
    │
    └─── market1501 / dukemtmc / cuhknp / cuhk03 / msmt17v1 / msmt17v2
         │   
         └─── DukeMTMC-reID / Market-1501-v15.09.15 / detected / cuhk03_release / MSMT17_V1 / MSMT17_V2
    

Run

ARCH=resMeta/IBNMeta
SRC1/SRC2/SRC3=market1501/dukemtmc/cuhk03/msmt17v1/msmt17v2
TARGET=market1501/dukemtmc/cuhknp/msmt17v1/msmt17v2

# train
CUDA_VISIBLE_DEVICES=0,1,2 python main.py \
-a $ARCH --BNNeck \
--dataset_src1 $SRC1 --dataset_src2 $SRC2 --dataset_src3 $SRC3 -d $TARGET \
--logs-dir $LOG_DIR --data-dir $DATA_DIR

# evaluate
python main.py \
-a $ARCH -d $TARGET \
--logs-dir $LOG_DIR --data-dir $DATA_DIR \
--evaluate --resume $RESUME

Results

You can download the above models in the paper from Google Drive. The model is named as $TARGET_$ARCH.pth.tar.

Acknowledgments

This repo borrows partially from MWNet, ECN and SpCL.

Citation

@inproceedings{zhao2021learning,
  title={Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification},
  author={Zhao, Yuyang and Zhong, Zhun and Yang, Fengxiang and Luo, Zhiming and Lin, Yaojin and Li, Shaozi and Nicu, Sebe},
  booktitle={CVPR},
  year={2021},
}

Contact

Email: [email protected]

Owner
Yuyang Zhao
Yuyang Zhao
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021