Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Overview

Mining the Social Web, 3rd Edition

The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Amazon and Safari Books Online.

The notebooks folder of this repository contains the latest bug-fixed sample code used in the book chapters.

Quickstart

Binder

The easiest way to start playing with code right away is to use Binder. Binder is a service that takes a GitHub repository containing Jupyter Notebooks and spins up a cloud-based server to run them. You can start experimenting with the code without having to install anything on your machine. Click the badge above, or follow this link to get started right away.

NOTE: Binder will not save your files on its servers. During your next session, it will be a completely fresh instantiation of this repository. If you need a more persistent solution, consider running the code on your own machine.

Getting started on your own machine using Docker

  1. Install Docker
  2. Install repo2docker: pip install jupyter-repo2docker
  3. From the command line:
repo2docker https://github.com/mikhailklassen/Mining-the-Social-Web-3rd-Edition

This will create a Docker container from the repository directly. It takes a while to finish building the container, but once it's done, you will see a URL printed to screen. Copy and paste the URL into your browser.

A longer set of instructions can be found here.

Getting started on your own machine from source

If you are familiar with git and have a git client installed on your machine, simply clone the repository to your own machine. However, it is up to you to install all the dependencies for the repository. The necessary Python libraries are detailed in the requirements.txt file. The other requirements are detailed in the Requirements section below.

If you prefer not to use a git client, you can instead download a zip archive directly from GitHub. The only disadvantage of this approach is that in order to synchronize your copy of the code with any future bug fixes, you will need to download the entire repository again. You are still responsible for installing any dependencies yourself.

Install all the prerequisites using pip:

pip install -r requirements.txt

Once you're done, step into the notebooks directory and launch the Jupyter notebook server:

jupyter notebook

Side note on MongoDB

If you wish to complete all the examples in Chapter 9, you will need to install MongoDB. We do not provide support on how to do this. This is for more advanced users and is really only relevant to a few examples in Chapter 9.

Contributing

There are several ways in which you can contribute to the project. If you discover a bug in any of the code, the first thing to do is to create a new issue under the Issues tab of this repository. If you are a developer and would like to contribute a bug fix, please feel free to fork the repository and submit a pull request.

The code is provided "as-is" and we make no guarantees that it is bug-free. Keep in mind that we access the APIs of various social media platforms and their APIs are subject to change. Since the start of this project, various social media platforms have tightened the permissions on their platform. Getting full use out of all the code in this book may require submitting an application the social media platform of your choice for approval. Despite these restrictions, we hope that the code still provides plenty of flexibility and opportunities to go deeper.

Owner
Mikhail Klassen
Co-Founder and CTO at @PaladinAI. PhD, astrophysics. I specialize in machine learning, AI, data mining, and data visualization.
Mikhail Klassen
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022