[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Overview

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks" by Hanxun Huang, Yisen Wang, Sarah Monazam Erfani, Quanquan Gu, James Bailey, Xingjun Ma


Robust Configurations for WideResNet (WRN-34-R)

def RobustWideResNet34(num_classes=10):
    # WRN-34-R configurations
    return RobustWideResNet(
        num_classes=num_classes, channel_configs=[16, 320, 640, 512],
        depth_configs=[5, 5, 5], stride_config=[1, 2, 2], stem_stride=1,
        drop_rate_config=[0.0, 0.0, 0.0], zero_init_residual=False,
        block_types=['basic_block', 'basic_block', 'basic_block'],
        activations=['ReLU', 'ReLU', 'ReLU'], is_imagenet=False,
        use_init=True)

Reproduce results from the paper

  • Pretrained Weights for WRN-34-R used in Table 2 available on Google Drive
  • All hyperparameters/settings for each model/method used in Table 2 are stored in configs/*.yaml files.

Evaluations of the robustness of WRN-34-R

WRN-34-R trained with TRADES

Replace PGD with other attacks ['CW', 'GAMA', 'AA'].

python main.py --config_path configs/config-WRN-34-R
               --exp_name /path/to/experiments/folders
               --version WRN-34-R-trades
               --load_best_model --attack PGD --data_parallel
WRN-34-R trained with TRADES and additional 500k data

Replace PGD with other attacks ['CW', 'GAMA', 'AA'].

python main.py --config_path configs/config-WRN-34-R
               --exp_name /path/to/experiments/folders
               --version WRN-34-R-trades-500k
               --load_best_model --attack PGD --data_parallel

Train WRN-34-R with 500k additional data from scratch

python main.py --config_path configs/config-WRN-34-R
               --exp_name /path/to/experiments/folders
               --version WRN-34-R-trades-500k
               --train --data_parallel

CIFAR-10 - Linf AutoAttack Leaderboard using additional 500k data

  • Note: This is not maintained, please find up-to-date leaderboard is available in RobustBench.
# paper model architecture clean report. AA
1 (Gowal et al., 2020) available WRN-70-16 91.10 65.87 65.88
2 Ours‡ + EMA available WRN-34-R 91.23 62.54 62.54
3 Ours available WRN-34-R 90.56 61.56 61.56
4 (Wu et al., 2020a) available WRN-34-15 87.67 60.65 60.65
5 (Wu et al., 2020b) available WRN-28-10 88.25 60.04 60.04
6 (Carmon et al., 2019) available WRN-28-10 89.69 62.5 59.53
7 (Sehwag et al., 2020) available WRN-28-10 88.98 - 57.14
8 (Wang et al., 2020) available WRN-28-10 87.50 65.04 56.29

Citation

@inproceedings{huang2021exploring,
    title={Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks},
    author={Hanxun Huang and Yisen Wang and Sarah Monazam Erfani and Quanquan Gu and James Bailey and Xingjun Ma},
    booktitle={NeurIPS},
    year={2021}
}

Part of the code is based on the following repo:

Owner
Hanxun Huang
Hanxun Huang
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022