TensorFlow CNN for fast style transfer

Overview

Fast Style Transfer in TensorFlow

Add styles from famous paintings to any photo in a fraction of a second!

It takes 100ms on a 2015 Titan X to style the MIT Stata Center (1024×680) like Udnie, by Francis Picabia.

Our implementation is based off of a combination of Gatys' A Neural Algorithm of Artistic Style, Johnson's Perceptual Losses for Real-Time Style Transfer and Super-Resolution, and Ulyanov's Instance Normalization. THe repository i based on https://github.com/lengstrom/fast-style-transfer.git.

Image Stylization

We added styles from various paintings to a photo of Chicago. Click on thumbnails to see full applied style images.



Implementation Details

Our implementation uses TensorFlow to train a fast style transfer network. We use roughly the same transformation network as described in Johnson, except that batch normalization is replaced with Ulyanov's instance normalization, and the scaling/offset of the output tanh layer is slightly different. We use a loss function close to the one described in Gatys, using VGG19 instead of VGG16 and typically using "shallower" layers than in Johnson's implementation (e.g. we use relu1_1 rather than relu1_2). Empirically, this results in larger scale style features in transformations.

Virtual Environment Setup (Anaconda) - Windows/Linux

Tested on

Spec
Operating System Windows 10 Home
GPU Nvidia GTX 2080 TI
CUDA Version 11.0
Driver Version 445.75

Step 1:Install Anaconda

https://docs.anaconda.com/anaconda/install/

Step 2:Build a virtual environment

Run the following commands in sequence in Anaconda Prompt:

conda create -n tf-gpu tensorflow-gpu=2.1.0
conda activate tf-gpu

Run the following command in the notebook or just conda install the package:

!pip install moviepy==1.0.2

Follow the commands below to use fast-style-transfer

Documentation

Training Style Transfer Networks

Use style.py to train a new style transfer network. Run python style.py to view all the possible parameters. Training takes 4-6 hours on a Maxwell Titan X. More detailed documentation here. Before you run this, you should run setup.sh. Example usage:

python main.py --style path/to/style/img.jpg \
  --checkpoint-dir checkpoint/path \
  --test path/to/test/img.jpg \
  --test-dir path/to/test/dir \
  --content-weight 1.5e1 \
  --checkpoint-iterations 1000 \
  --batch-size 20

Evaluating Style Transfer Networks

Use evaluate.py to evaluate a style transfer network. Run python evaluate.py to view all the possible parameters. Evaluation takes 100 ms per frame (when batch size is 1) on a Maxwell Titan X. More detailed documentation here. Takes several seconds per frame on a CPU. Models for evaluation are located here. Example usage:

python eval.py --checkpoint path/to/style/model.ckpt \
  --in-path dir/of/test/imgs/ \
  --out-path dir/for/results/

Requirements

You will need the following to run the above:

  • TensorFlow 0.11.0
  • Python 2.7.9, Pillow 3.4.2, scipy 0.18.1, numpy 1.11.2
  • If you want to train (and don't want to wait for 4 months):
    • A decent GPU
    • All the required NVIDIA software to run TF on a GPU (cuda, etc)
  • ffmpeg 3.1.3 if you want to stylize video
Owner
Master at Shenzhen University. Research interest: transfer learning, domain adaptation, autonomous vehicle and reinforcement learning.
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023