CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

Overview

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP.

CLIP2Video is a video-text retrieval model based on CLIP (ViT-B/32), which transfers the image-language pre-training model to video-text retrieval in an end-to-end manner. Our model involves a Temporal Difference Block to capture motions at fine temporal video frames, and a Temporal Alignment Block to re-align the tokens of video clips and phrases and enhance the multi-modal correlation. We conduct thorough ablation studies, and achieve state-of-the-art performance on major text-to-video and video-to-text retrieval benchmarks, including new records of retrieval accuracy on MSR-VTT, MSVD and VATEX.

Pipeline Blocks

Introduction

This is the source code of CLIP2Video, a method for Video-Text Retrieval based on temporal correlations. It is built on top of the CLIP4Clip by ( Huaishao Luo et al.) in PyTorch.

Requirement

pip install -r requirements.txt 

Download data and Pre-trained Model

Supported public training sets:

  • MSR-VTT(9k)
  • MSR-VTT(full)
  • MSVD
  • VATEX-English Version

Supported public testing protocols:

  • MSR-VTT 1k-A protocol (SOTA)
  • MSR-VTT full protocol (SOTA)
  • MSVD(SOTA
  • VATEX-English version(SOTA

Download official video: Official videos of different data can be found as follows:

Pre-process

To train and test the above datasets: you should use sample_frame.py to transform video into frames.

python sample_frame.py --input_path [raw video path] --output_path [frame path]

(Optional) The splits and captions can be found in the links of used dataset. For the convenience, you can also use the split in data/ directly.

Download CLIP model

To train and test the above datasets based on pre-trained CLIP model, you should visit CLIP and download ViT-B/32.

Test Model

We provide three models trained on MSVD, MSR-VTT and VATEX-English.

Model Name checkpoint
CLIP2Video_MSVD link
CLIP2Video_MSRVTT9k link
CLIP2Video_VATEX link

To test the trained model, please refer test/.

(Optional) If the path of trained model(--checkpoint) doesn't exist, the parameters of basic CLIP (--clip_path) will be loaded.

Main Article Results of CLIP2Video

T2V:

Protocol [email protected] [email protected] [email protected] Median Rank Mean Rank
MSVD 47.0 76.8 85.9 2 9.6
MSRVTT-9k 45.6 72.6 81.7 2 14.6
MSRVTT-Full 29.8 55.5 66.2 4 45.5
Vatex (English) random 1k5 split 57.3 90.0 95.5 1 3.6
Vatex (English) HGR split 61.2 90.9 95.6 1 3.4

V2T:

Protocol [email protected] [email protected] [email protected] Median Rank Mean Rank
MSVD 58.7 85.6 91.6 1 4.3
MSRVTT-9k 43.5 72.3 82.1 2 10.2
MSRVTT-Full 54.6 82.1 90.8 1 5.3
Vatex (English) random 1k5 split 76.0 97.7 99.9 1 1.5
Vatex (English) HGR split 77.9 98.1 99.1 1 1.6

(Optional:) Clarification of different results in VATEX:

  1. In our paper, we do not strictly follow HGR's split, but randomly split the test set by ourselves, which is the split in

    • data/vatex_data/test1k5_sec_list.txt
  2. In HGR split, we adopt the totally same split following HGR, and the split can be seen as:

    • data/vatex_data/test_list.txt
    • data/vatex_data/val_list.txt

We will revise the results strictly following HGR split for fair comparison in the paper later!


Citation

If you find CLIP2Video useful in your work, you can cite the following paper:

@article{fang2021clip2video,
  title={CLIP2Video: Mastering Video-Text Retrieval via Image CLIP},
  author={Fang, Han and Xiong, Pengfei and Xu, Luhui and Chen, Yu},
  journal={arXiv preprint arXiv:2106.11097},
  year={2021}
}

Acknowledgments

Some components of this code implementation are adopted from CLIP and CLIP4Clip. We sincerely appreciate for their contributions.

Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022