Tandem Mass Spectrum Prediction with Graph Transformers

Overview

MassFormer

This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv.

Setting Up Environment

We recommend using conda. Three conda yml files are provided in the env/ directory (cpu.yml, cu101.yml, cu102.yml), providing different pytorch installation options (CPU-only, CUDA 10.1, CUDA 10.2). They can be trivially modified to support other versions of CUDA.

To set up an environment, run the command conda env create -f ${CONDA_YAML}, where ${CONDA_YAML} is the path to the desired yaml file.

Downloading NIST Data

Note: this step requires a Windows System or Virtual Machine

The NIST 2020 LC-MS/MS dataset can be purchased from an authorized distributor. The spectra and associated compounds can be exported to MSP/MOL format using the included lib2nist software. There is a single MSP file which contains all of the mass spectra, and multiple MOL files which include the molecular structure information for each spectrum (linked by ID). We've included a screenshot describing the lib2nist export settings.

Alt text

There is a minor bug in the export software that sometimes results in errors when parsing the MOL files. To fix this bug, run the script python mol_fix.py ${MOL_DIR}, where ${MOL_DIR} is a path to the NIST export directory with MOL files.

Downloading Massbank Data

The MassBank of North America (MB-NA) data is in MSP format, with the chemical information provided in the form of a SMILES string (as opposed to a MOL file). It can be downloaded from the MassBank website, under the tab "LS-MS/MS Spectra".

Exporting and Preparing Data

We recommend creating a directory called data/ and placing the downloaded and uncompressed data into a folder data/raw/.

To parse both of the datasets, run parse_and_export.py. Then, to prepare the data for model training, run prepare_data.py. By default the processed data will end up in data/proc/.

Setting Up Weights and Biases

Our implementation uses Weights and Biases (W&B) for logging and visualization. For full functionality, you must set up a free W&B account.

Training Models

A default config file is provided in "config/template.yml". This trains a MassFormer model on the NIST HCD spectra. Our experiments used systems with 32GB RAM, 1 Nvidia RTX 2080 (11GB VRAM), and 6 CPU cores.

The config/ directory has a template config file template.yml and 8 files corresponding to the experiments from the paper. The template config can be modified to train models of your choosing.

To train a template model without W&B with only CPU, run python runner.py -w False -d -1

To train a template model with W&B on CUDA device 0, run python runner.py -w True -d 0

Reproducing Tables

To reproduce a model from one of the experiments in Table 2 or Table 3 from the paper, run python runner.py -w True -d 0 -c ${CONFIG_YAML} -n 5 -i ${RUN_ID}, where ${CONFIG_YAML} refers to a specific yaml file in the config/ directory and ${RUN_ID} refers to an arbitrary but unique integer ID.

Reproducing Visualizations

The explain.py script can be used to reproduce the visualizations in the paper, but requires a trained model saved on W&B (i.e. by running a script from the previous section).

To reproduce a visualization from Figures 2,3,4,5, run python explain.py ${WANDB_RUN_ID} --wandb_mode=online, where ${WANDB_RUN_ID} is the unique W&B run id of the desired model's completed training script. The figues will be uploaded as PNG files to W&B.

Reproducing Sweeps

The W&B sweep config files that were used to select model hyperparameters can be found in the sweeps/ directory. They can be initialized using wandb sweep ${PATH_TO_SWEEP}.

Owner
Röst Lab
Röst lab at U of T -- join us at https://gitter.im/Roestlab/Lobby
Röst Lab
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021