Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

Overview

InstanceRefer

InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

This repository is for the 1st method on ScanRefer benchmark [arxiv paper].

Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang, Zhen Li*, Shuguang Cui

If you find our work useful in your research, please consider citing:

@InProceedings{yuan2021instancerefer,
  title={InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring},
  author={Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang, Zhen Li, Shuguang Cui},
  journal={arXiv preprint},
  year={2021}
}

News

  • 2021-03-31 We release InstanceRefer v1 πŸš€ !
  • 2021-03-18 We achieve 1st place in ScanRefer leaderboard πŸ”₯ .

Getting Started

Setup

The code is tested on Ubuntu 16.04 LTS & 18.04 LTS with PyTorch 1.3.0 CUDA 10.1 installed.

conda install pytorch==1.3.0 cudatoolkit=10.1 -c pytorch

Install the necessary packages listed out in requirements.txt:

pip install -r requirements.txt

After all packages are properly installed, please run the following commands to compile the torchsaprse:

cd lib/torchsparse/
python setup.py install

Before moving on to the next step, please don't forget to set the project root path to the CONF.PATH.BASE in lib/config.py.

Data preparation

  1. Download the ScanRefer dataset and unzip it under data/.
  2. Downloadand the preprocessed GLoVE embeddings (~990MB) and put them under data/.
  3. Download the ScanNetV2 dataset and put (or link) scans/ under (or to) data/scannet/scans/ (Please follow the ScanNet Instructions for downloading the ScanNet dataset). After this step, there should be folders containing the ScanNet scene data under the data/scannet/scans/ with names like scene0000_00
  4. Used official and pre-trained PointGroup generate panoptic segmentation in PointGroupInst/. We provide pre-processed data in Baidu Netdisk [password: 0nxc].
  5. Pre-processed instance labels, and new data should be generated in data/scannet/pointgroup_data/
cd data/scannet/
python prepare_data.py --split train --pointgroupinst_path [YOUR_PATH]
python prepare_data.py --split val   --pointgroupinst_path [YOUR_PATH]
python prepare_data.py --split test  --pointgroupinst_path [YOUR_PATH]

Finally, the dataset folder should be organized as follows.

InstanceRefer
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ scannet
β”‚   β”‚  β”œβ”€β”€ meta_data
β”‚   β”‚  β”œβ”€β”€ pointgroup_data
β”‚   β”‚  β”‚  β”œβ”€β”€ scene0000_00_aligned_bbox.npy
β”‚   β”‚  β”‚  β”œβ”€β”€ scene0000_00_aligned_vert.npy
β”‚   β”‚  β”œβ”€β”€β”œβ”€β”€  ... ...

Training

Train the InstanceRefer model. You can change hyper-parameters in config/InstanceRefer.yaml:

python scripts/train.py --log_dir instancerefer

TODO

  • Updating to the best version.
  • Release codes for prediction on benchmark.
  • Release pre-trained model.
  • Merge PointGroup in an end-to-end manner.

Acknowledgement

This project is not possible without multiple great opensourced codebases.

License

This repository is released under MIT License (see LICENSE file for details).

Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel NΓΌtzi 390 Dec 31, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Security evaluation module with onnx, pytorch, and SecML.

πŸš€ 🐼 πŸ”₯ PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Official Implement of CVPR 2021 paper β€œCross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022