DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

Overview

DIT - DTLS Interception Tool

DIT is a MitM proxy tool to intercept DTLS traffic.

It can intercept, manipulate and/or suppress DTLS datagrams between two DTLS endpoints. To achieve this, the machine DIT is running on has to be put in a MitM position with tools like arpspoof. DIT has been built with Python 3.8, utilizes scapy and python-mbedtls to process datagrams and supports a wide variety of cipher suites. It can handle PSK-based and certificate-based (RSA + ECC) authentication schemes and has been built and tested on Debian-based Linux operating systems like Ubuntu or Kali Linux.

DIT has been built to analyze traffic between IoT devices but can intercept any DTLS traffic in a local network. It has been tested and evaluated with OpenSSL and devices from the IKEA TRÅDFRI and Philips Hue series. DIT can print the decrypted datagram payload to stdout or write it into a logfile. The tool can be configured via CLI arguments or via a configuration file (./config/dit_config.yaml).

1. Installation

DIT works with raw sockets and needs to run with root privileges. You can install DIT by simply cloning the repository and installing the dependencies listed in requirements.txt with elevated privileges.

git clone https://github.com/CountablyInfinite/dit
pip3 install -r requirements.txt

2. Getting started

2.1 Verifying the installation

After cloning and installing the dependencies you can run the following command with elevated privileges to see if DIT has been installed successfully:

./dit.py -h
**************************
*   ___    ___   _____   *
*  |   \  |_ _| |_   _|  *
*  | |) |  | |    | |    *
*  |___/  |___|   |_|    *
*                        *
* DTLS INTERCEPTION TOOL *
*                        *
**************************

usage: ./dit.py [optional arguments] start

check configuration stored in ./config/dit_config.yaml before running DIT. 
edit the file or use optional command line arguments to override the default configuration. 
DIT needs root privileges and custom iptable rules to work properly.

run DIT:
  start                 run DIT with the current settings (args override config file settings)

target configuration:
  -isi , --iot_srv_ip   iot server ip address (listening service) to be intercepted (config file: 192.168.183.129)
  -isp , --iot_srv_po   iot server port to be intercepted. (config file: 1337)
  -ici , --iot_cli_ip   iot client ip address to be intercepted. (config file: 192.168.183.128)

interface configuration:
  -eif , --ex_if_name   external interface name (e.g. "eth0") to listen for incoming connections. (config file: ens33)
  -lif , --lh_if_name   local interface name (e.g. "lo") to communicate with local services. (config file: lo)

psk configuration:
  -cid , --cli_id       client identity to configure server and client handler with. (config file: Client_identity)
  -psk , --pre_sh_key   pre-shared key to configure server and client handler with. (config file: DIT_secret)
  --ciphers  [ ...]     list of ciphers to use, separated by spaces. (config file: None)

certificate configuration:
  -cer, --use_cert      [FLAG] use certificates as a method of authentication (instead of a psk). (config file: False)
  -ks , --key_size      length of the RSA/ECC key in bits. (config file: 2048)
  -ecc, --use_ecc       [FLAG] use 521 bit ECC instead of RSA to generate a key pair. disables --key_size. (config file: False)

local services configuration:
  -lci , --lh_cli_ip    local ip address to start a client handler (DTLS server) on. (config file: 127.0.0.1)
  -lcp , --lh_cli_po    local port to start a client handler (DTLS server listener) on. (config file: 1338)
  -lsi , --lh_srv_ip    local ip address to connect a server handler (DTLS client) to. (config file: 127.0.0.1)
  -lsp , --lh_srv_po    local port to connect a server handler (DTLS client) to. (config file: 1339)

miscellaneous:
  -ibl, --icmp_block    [FLAG] automatically create an iptables rule to suppress icmp 'destination unreachable' messages
  -o , --output_file    append intercepted unencrypted messages to an output file
  -v, --verbose         [FLAG] increase verbosity to DEBUG level
  -h, --help            [FLAG] show this help text and exit

examples:
./dit.py -isi 192.168.0.1 -isp 1337 -ici 192.168.0.2 --ciphers TLS-PSK-WITH-AES-128-CCM-8 TLS-PSK-WITH-CHACHA20-POLY1305-SHA256 -psk DIT_secret start
./dit.py --iot_srv_ip 192.168.0.1 --iot_cli_ip 192.168.0.2 --use_cert --key_size 3072 --ciphers TLS-RSA-WITH-AES-128-GCM-SHA256 --verbose start
./dit.py -isi 192.168.0.1 -ici 192.168.0.2 --use_cert -ecc --output_file logfile.log --verbose start

this tool has been created for the purposes of academic research. 
use responsibly and only when explicitly authorized.

2.2 Prerequisite

2.2.1 Elevated privileges

DIT uses raw sockets and therefore needs to run with elevated (root) privileges.

2.2.2 iptables rule

DIT builds four proxy layers with scapy that are communicating between the external interface and the DTLS services running on localhost. To suppress upcoming "Destination unreachable" errors - that cause DIT to halt with an error - a custom iptables rule is necessary. You can generate it with the following command:

iptables -I OUTPUT -d localhost-ip -p icmp --icmp-type destination-unreachable -j DROP

The iptable rules can be set/unset automatically by using the --icmp_block argument when starting DIT.

./dit.py --icmp_block start

2.2.3 MitM position

For DIT to work it has to be run from a MitM position. A MitM position can be achieved in many ways, one of them is by using the tool arpspoof (part of the dsniff tool suite). To gain a MitM position in a local network between the clients 192.168.0.1 and 192.168.0.2 you can use the following command:

arpspoof -i ens33 -t 192.168.0.1 -r 192.168.0.2

2.3 Configuring DIT

DIT can be configured via CLI arguments or via a configuration file (./config/dit_config.yaml). CLI arguments override settings stored in the configuration file. When calling ./dit.py -h - as depicted in section 2.1 - DIT prints out the current configuration that has been read from the configuration file.

2.3.1 ./config/dit_config.yaml

DIT comes with a default configuration you'll need to adapt before running an attack.

cat ./config/dit_config.yaml 
# configure spoofing/sniffing targets
targets:  
  iot_srv_ip: 192.168.183.129
  iot_srv_po: 1337
  iot_cli_ip: 192.168.183.128
  ciphers:
    # if no ciphers are configured, DIT will offer all ciphersuites available with mbedTLS
    #- TLS-ECDHE-ECDSA-WITH-AES-256-CBC-SHA384
    #- TLS-PSK-WITH-AES-128-CCM-8
    #- TLS-RSA-WITH-AES-128-GCM-SHA256

# configure interface names
interfaces:
  ex_if_name: ens33
  lh_if_name: lo

# configure psk options
psk:
  cli_id: Client_identity
  pre_sh_key: DIT_secret

# configure certificate options
certificate:
  # default is RSA. "use_ecc" arg enables ECC and disables key_size
  use_cert: False
  key_size: 2048
  use_ecc: False

# configure local dtls services
local_services:
  lh_cli_ip: 127.0.0.1
  lh_cli_po: 1338
  lh_srv_ip: 127.0.0.1
  lh_srv_po: 1339

targets:

  • iot_srv_ip: IP address of the dtls server
  • iot_srv_po: Port the dtls server is listening on
  • iot_cli_ip: IP address of the dtls client
  • ciphers: List of cipher suites (using the OpenSSL format) DIT will offer/support when establishing the connections. When no suites are configured DIT offers/supports all cipher suites available with mbedTLS.

interfaces:

  • ex_if_name: Name of the external interface DIT will operate on.
  • lh_if_name: Name of the internal interface DIT will operate on. Local DTLS server and client services will operate on this interface.

psk:

  • cli_id: Client identy to be used when accepting / establishing DTLS connections. (Default key is 'Client_identity')
  • pr_sh_key: PSK to be used when accepting / establishing DTLS connections. (ASCII encoded)

certificate:

  • use_cert: Boolean value. Activates the usage of RSA certificates. DIT automatically creates and uses a corresponding certificate with "key_size" Bits in length.
  • key_size: Length of the RSA key in bits.
  • use_ecc: Boolean value. Activates the usege of ECC certificates. Only works when "use_cert" is set. Deactivates "key_size".

local services:

  • lh_cli_ip: IP address of the localhost interface the dtls client is running on. (typically 127.0.0.1)
  • lh_cli_po: Port the local client instance is accepting traffic on. (needn't be changed in a typical setup)
  • lh_srv_ip: IP address of the localhost interface the dtls server is running on. (typically 127.0.0.1)
  • lh_srv_po: Port the local server instance is accepting traffic on. (needn't be changed in a typical setup)

2.3.2 Command Line Arguments

DIT can be configured via Command Line Arguments. The arguments are listed and described when calling ./dit.py -h - as shown in section 2.1. Command Line Arguments override settings stored in the configuration file and are a fast way to adapt/test settings without changing the config file.

3. Use cases / Evaluation

Refer to https://github.com/CountablyInfinite/dit/tree/master/doc

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022