A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Overview

Welcome to Carbon Insight

Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other participants in the community. Our mission is to visualize the world's most cutting-edge research on carbon emission, carbon sink, and carbon flux to generate insights of carbon and society. We strive to accelerate climate studies and global climate actions with computational innovations.

With the global consensus of the 1.5°C goal of the Paris Agreement, the world has a goal to achieve carbon neutralization by 2050. This ambitious goal requires collaboration from all fields. To tackle the climate crisis together, we must first understand where carbon comes from and where it goes.

With Carbon Insight, you can work with the world's most updated carbon-related data and generate insights as you wish.

For example, in our first release, you can leverage the dataset provided by Carbon Monitor, to have a daily anthropogenic CO2 emission estimation by country and sector since January 2019.

Carbon Insight also lets you observe and track correlations between global carbon emissions and socioeconomic factors such as COVID-19 and GDP.

We aim to achieve the following goals:

  • Using data visualization to support scientific research, allowing researchers to identify problems and ideas that are not easily seen in conventional ways
  • Acting as a tool that allows all users to explore carbon neutralization pathways under different scenarios and with technology innovations
  • Illustrating data and science of carbon neutralization for the non-professionals to raise public awareness towards climate change

How to use

Using Carbon Monitor, a dataset providing daily estimations of CO2 emissions by country/sector, as an example, we demonstrate two ways to do analysis with carbon-related data:

  • interactable Power BI reports, and
  • code examples

If you want a straightforward view of a global emission map by country, you can download our Power BI reports and filter results based on your interest.

(New to Power BI? Check the instructions on how to download the Power BI app and how to explore with dashboards, reports, and apps in Power BI.)

If you have some basic coding knowledge and want to get your hands dirty customizing your own analysis or combining different datasets to scale your research, go to our Jupyter Notebook Tutorials and walk through the code examples we provide on how to acquire, process and visualize carbon-related data.

Release Note

2022/01/06 release:

Contributors

Carbon Insight started with a research collaboration between MSRA and Zhu Liu's team from Department of Earth System Science, Tsinghua University. We share a vision of demonstrating efforts towards carbon neutralization through visualization, benchmarking, and insightful analysis with both global consistency and local detail. Our collaboration goes wider to more areas of carbon footprint monitoring and deeper to using advanced machine learning algorithms to assist the modeling of carbon flux.

We're a fully open project and welcome contributors or collaborators from the whole community, if you wish to contribute to the project or raise suggestions, contact us at [email protected].

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
Akshat Surolia 2 May 11, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022