nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

Related tags

Deep LearningnextPARS
Overview

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

Here you will find the scripts necessary to produce the scores described in our paper from fastq files obtained during the experiment.

Install Prerequisites

First install git:

sudo apt-get update
sudo apt-get install git-all

Then clone this repository

git clone https://github.com/jwill123/nextPARS.git

Now, ensure the necessary python packages are installed, and can be found in the $PYTHONPATH environment variable by running the script packages_for_nextPARS.sh in the nextPARS directory.

cd nextPARS/conf
chmod 775 packages_for_nextPARS.sh
./packages_for_nextPARS.sh

Convert fastq to tab

In order to go from the fastq outputs of the nextPARS experiments to a format that allows us to calculate scores, first map the reads in the fastq files to a reference using the program of your choice. Once you have obtained a bam file, use PARSParser_0.67.b.jar. This program counts the number of reads beginning at each position (which indicates a cut site for the enzyme in the file name) and outputs it in .tab format (count values for each position are separated by semi-colons).

Example usage:

java -jar PARSParser_0.67.b.jar -a bamFile -b bedFile -out outFile -q 20 -m 5

where the required arguments are:

  • -a gives the bam file of interest
  • -b is the bed file for the reference
  • -out is the name given to the output file in .tab format

Also accepts arguments:

  • -q for minimum mapping quality for reads to be included [default = 0]
  • -m for minimum average counts per position for a given transcript [default = 5.0]

Sample Data

There are sample data files found in the folder nextPARS/data, as well as the necessary fasta files in nextPARS/data/SEQS/PROBES, and the reference structures obtained from PDB in nextPARS/data/STRUCTURES/REFERENCE_STRUCTURES There are also 2 folders of sample output files from the PARSParser_0.67.b.jar program that can be used as further examples of the nextPARS score calculations described below. These folders are found in nextPARS/data/PARSParser_outputs. NOTE: these are randomly generated sequences with random enzyme values, so they are just to be used as examples for the usage of the scripts, good results should not be expected with these.

nextPARS Scores

To obtain the scores from nextPARS experiments, use the script get_combined_score.py. Sample data for the 5 PDB control structures can be found in the folder nextPARS/data/

There are a number of different command line options in the script, many of which were experimental or exploratory and are not relevant here. The useful ones in this context are the following:

  • Use the -i option [REQUIRED] to indicate the molecule for which you want scores (all available data files will be included in the calculations -- molecule name must match that in the data file names)

  • Use the -inDir option to indicate the directory containing the .tab files with read counts for each V1 and S1 enzyme cuts

  • Use the -f option to indicate the path to the fasta file for the input molecule

  • Use the -s option to produce an output Structure Preference Profile (SPP) file. Values for each position are separated by semi-colons. Here 0 = paired position, 1 = unpaired position, and NA = position with a score too low to determine its configuration.

  • Use the -o option to output the calculated scores, again with values for each position separated by semi-colons.

  • Use the --nP_only option to output the calculated nextPARS scores before incorporating the RNN classifier, again with values for each position separated by semi-colons.

  • Use the option {-V nextPARS} to produce an output with the scores that is compatible with the structure visualization program VARNA1

  • Use the option {-V spp} to produce an output with the SPP values that is compatible with VARNA.

  • Use the -t option to change the threshold value for scores when determining SPP values [default = 0.8, or -0.8 for negative scores]

  • Use the -c option to change the percentile cap for raw values at the beginning of calculations [default = 95]

  • Use the -v option to print some statistics in the case that there is a reference CT file available ( as with the example molecules, found in nextPARS/data/STRUCTURES/REFERENCE_STRUCTURES ). If not, will still print nextPARS scores and info about the enzyme .tab files included in the calculations.

Example usage:

# to produce an SPP file for the molecule TETp4p6
python get_combined_score.py -i TETp4p6 -s
# to produce a Varna-compatible output with the nextPARS scores for one of the 
# randomly generated example molecules
python get_combined_score.py -i test_37 -inDir nextPARS/data/PARSParser_outputs/test1 \
  -f nextPARS/data/PARSParser_outputs/test1/test1.fasta -V nextPARS

RNN classifier (already incorporated into the nextPARS scores above)

To run the RNN classifier separately, using a different experimental score input (in .tab format), it can be run like so with the predict2.py script:

python predict2.py -f molecule.fasta -p scoreFile.tab -o output.tab

Where the command line options are as follows:

  • the -f option [REQUIRED] is the input fasta file
  • the -p option [REQUIRED] is the input Score tab file
  • the -o option [REQUIRED] is the final Score tab output file.
  • the -w1 option is the weight for the RNN score. [default = 0.5]
  • the -w2 option is the weight for the experimental data score. [default = 0.5]

References:

  1. Darty,K., Denise,A. and Ponty,Y. (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinforma. Oxf. Engl., 25, 1974–197
Owner
Jesse Willis
Jesse Willis
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022