Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

Overview

A Unified Framework for Parameter-Efficient Transfer Learning

This is the official implementation of the paper:

Towards a Unified View of Parameter-Efficient Transfer Learning
Junxian He*, Chunting Zhou*, Xuezhe Ma, Taylor Berg-Kirkpatrick, Graham Neubig
Preprint 2021

Parameter-efficient transfer learning (PETL) methods only tune a small number of (extra) parameters to adapt large pretrained models into downstream tasks. This paper reveals the connection among existing PETL methods such as adapters, prefix tuning, and LoRA, and proposes a unified framework to interpret their designs. This unified framework is able to instantiate existing approaches by varying values along several defined design dimensions, which also provides principled guidance to design new PETL methods. In this repo as well as in the paper, we include examples of how we easily derive new state-of-the-art PETL methods from the unified framework.

intro

Dependencies

This repo is a fork of the huggingface transformers repo (forked on June 23, 2021), and the code is tested on PyTorch 1.9.0. Please follow the instructions below to install dependencies after you set up PyTorch:

git clone [email protected]:jxhe/MAM-adapter.git
cd MAM-adapter

# install transformers from this repo
pip install -e .

# install other requirements
pip install datasets==1.11.0

# used to compute BLEU score for en-ro translation
git clone [email protected]:moses-smt/mosesdecoder.git

Usage

MAM-Adapter

Run the following command to reproduce the MAM-Adapter results in the paper on the XSum, en-ro translation, MNLI, or SST2 datasets:

bash exps/run_{xsum|en_ro|glue}.sh

We ran all the experiments with one A6000 or A100 GPU that has >=40GB GPU memory -- if your GPU does not have a large memory, you may need to reduce the bsz (max_tokens_per_batch for en-ro) and increase the gradient_steps values in the scripts to match our effective batch size. You may train with multiple GPUs easily with python -m torch.distributed.launch --nproc_per_node {num_gpus} to enable data parallelism.

Training time: in our experiments that use one GPU, XSum takes 24 hours w/ A100 or 50 hours w/ A6000, en-ro takes 20 hours w/ A6000, SST2 takes 2 hours, and MNLI takes 10 hours.

Advanced Usage for Other PETL Variants

As the paper shows, our unified framework instantiates different PETL variants easily by varying along the design dimensions. You can modify the script to train other PETL variants as we studied in the paper, we include some examples in run_xsum.sh, which can be directly applied to the other scripts as well:

# ----- MAM adapter -----
attn_mode="prefix"
attn_option="concat"
attn_composition="add"
attn_bn=30  # attn bottleneck dim

ffn_mode="adapter"
ffn_option="parallel"
ffn_adapter_layernorm_option="none"
ffn_adapter_init_option="lora"
ffn_adapter_scalar="4"
ffn_bn=512 # ffn bottleneck dim

# ----- prefix tuning baseline ----- 
# attn_mode="prefix"
# attn_option="concat"
# attn_composition="add"
# attn_bn=200  # attn bottleneck dim

# ffn_mode="none"
# ffn_option="parallel"
# ffn_adapter_layernorm_option="none"
# ffn_adapter_init_option="lora"
# ffn_adapter_scalar="4"
# ffn_bn=512 # ffn bottleneck dim

# ----- Houlsby Adapter ----- 
# attn_mode="adapter"
# attn_option="sequential"
# attn_composition="add"
# attn_bn=200  # attn bottleneck dim

# ffn_mode="adapter"
# ffn_option="sequential"
# ffn_adapter_layernorm_option="none"
# ffn_adapter_init_option="bert"
# ffn_adapter_scalar="1"
# ffn_bn=200 # ffn bottleneck dim

# ----- FFN Scaled Parallel Adapter ----- 
# attn_mode="None"
# attn_option="parallel"
# attn_composition="add"
# attn_bn=200  # attn bottleneck dim

# ffn_mode="adapter"
# ffn_option="parallel"
# ffn_adapter_layernorm_option="none"
# ffn_adapter_init_option="lora"
# ffn_adapter_scalar="4"
# ffn_bn=512 # ffn bottleneck dim

There are more variations than what is shown above. Please see a complete explanation of these arguments here in petl/options.py. The results of all the variants reported in the paper could be reproduced by changing these values in the scripts.

Citation

@article{he2021towards,
  title={Towards a Unified View of Parameter-Efficient Transfer Learning},
  author={He, Junxian and Zhou, Chunting and Ma, Xuezhe and Berg-Kirkpatrick, Taylor and Neubig, Graham},
  journal={arXiv preprint arXiv:2110.04366},
  year={2021}
}
Owner
Junxian He
NLP/ML PhD student at CMU
Junxian He
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

CASIA-IVA-Lab 67 Dec 04, 2022
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Rohit Ingole 2 Mar 24, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022