UPSNet: A Unified Panoptic Segmentation Network

Overview

UPSNet: A Unified Panoptic Segmentation Network

Introduction

UPSNet is initially described in a CVPR 2019 oral paper.

Disclaimer

This repository is tested under Python 3.6, PyTorch 0.4.1. And model training is done with 16 GPUs by using horovod. It should also work under Python 2.7 / PyTorch 1.0 and with 4 GPUs.

License

© Uber, 2018-2019. Licensed under the Uber Non-Commercial License.

Citing UPSNet

If you find UPSNet is useful in your research, please consider citing:

@inproceedings{xiong19upsnet,
    Author = {Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, Raquel Urtasun},
    Title = {UPSNet: A Unified Panoptic Segmentation Network},
    Conference = {CVPR},
    Year = {2019}
}

Main Results

COCO 2017 (trained on train-2017 set)

test split PQ SQ RQ PQTh PQSt
UPSNet-50 val 42.5 78.0 52.4 48.5 33.4
UPSNet-101-DCN test-dev 46.6 80.5 56.9 53.2 36.7

Cityscapes

PQ SQ RQ PQTh PQSt
UPSNet-50 59.3 79.7 73.0 54.6 62.7
UPSNet-101-COCO (ms test) 61.8 81.3 74.8 57.6 64.8

Requirements: Software

We recommend using Anaconda3 as it already includes many common packages.

Requirements: Hardware

We recommend using 4~16 GPUs with at least 11 GB memory to train our model.

Installation

Clone this repo to $UPSNet_ROOT

Run init.sh to build essential C++/CUDA modules and download pretrained model.

For Cityscapes:

Assuming you already downloaded Cityscapes dataset at $CITYSCAPES_ROOT and TrainIds label images are generated, please create a soft link by ln -s $CITYSCAPES_ROOT data/cityscapes under UPSNet_ROOT, and run init_cityscapes.sh to prepare Cityscapes dataset for UPSNet.

For COCO:

Assuming you already downloaded COCO dataset at $COCO_ROOT and have annotations and images folders under it, please create a soft link by ln -s $COCO_ROOT data/coco under UPSNet_ROOT, and run init_coco.sh to prepare COCO dataset for UPSNet.

Training:

python upsnet/upsnet_end2end_train.py --cfg upsnet/experiments/$EXP.yaml

Test:

python upsnet/upsnet_end2end_test.py --cfg upsnet/experiments/$EXP.yaml

We provide serveral config files (16/4 GPUs for Cityscapes/COCO dataset) under upsnet/experiments folder.

Model Weights

The model weights that can reproduce numbers in our paper are available now. Please follow these steps to use them:

Run download_weights.sh to get trained model weights for Cityscapes and COCO.

For Cityscapes:

python upsnet/upsnet_end2end_test.py --cfg upsnet/experiments/upsnet_resnet50_cityscapes_16gpu.yaml --weight_path ./model/upsnet_resnet_50_cityscapes_12000.pth
python upsnet/upsnet_end2end_test.py --cfg upsnet/experiments/upsnet_resnet101_cityscapes_w_coco_16gpu.yaml --weight_path ./model/upsnet_resnet_101_cityscapes_w_coco_3000.pth

For COCO:

python upsnet/upsnet_end2end_test.py --cfg upsnet/experiments/upsnet_resnet50_coco_16gpu.yaml --weight_path model/upsnet_resnet_50_coco_90000.pth
python upsnet/upsnet_end2end_test.py --cfg upsnet/experiments/upsnet_resnet101_dcn_coco_3x_16gpu.yaml --weight_path model/upsnet_resnet_101_dcn_coco_270000.pth
Owner
Uber Research
Uber's research projects. Projects in this organization are not built for production usage. Maintainance and supports are limited.
Uber Research
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022