ANEA: Distant Supervision for Low-Resource Named Entity Recognition

Related tags

Deep Learninganea
Overview

ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA is a tool to automatically annotate named entities in unlabeled text based on entity lists for the use as distant supervision.

Distant supervision allows obtaining labeled training corpora for low-resource settings where only limited hand-annotated data exists. However, to be used effectively, the distant supervision must be easy to gather. ANEA is a tool to automatically annotate named entities in texts based on entity lists. It spans the whole pipeline from obtaining the lists to analyzing the errors of the distant supervision. A tuning step allows the user to improve the automatic annotation with their linguistic insights without labelling or checking all tokens manually.

An example of the workflow can be seen in this video. For more details, take a look at our paper (accepted at PML4DC @ ICLR'21). For the additional material of the paper, please check the subdirectory additional of this repository.

Installation

ANEA should run on all major operating systems. We recommend the installation via conda or miniconda:

git clone https://github.com/uds-lsv/anea

conda create -n anea python=3.7
conda activate anea
pip install spacy==2.2.4 Flask==1.1.1 fuzzywuzzy==0.18.0

For tokenizationa and lemmatization, a spacy language pack needs to be installed. Run the following command with the corresponding language code, e.g. en for English. Check https://spacy.io/usage for supported languages

python -m spacy download en

Download the Wikidata JSON dump from https://dumps.wikimedia.org/wikidatawiki/entities/ and extract it to the instance directory (this may take a while).

Running

After the installation, you can run ANEA using the following commands on the command line

conda activate anea
./run.sh

Then open the browser and go to the address http://localhost:5000/ If you run it for the first time, you should configure ANEA at the Settings tab.

The ANEA (server) tool can run on a different machine than the browser of the user. It is just necessary that the user's computer can access the port 5000 on the machine that the ANEA server is running on (e.g. via ssh port forwarding or opening the correspoding port on the firewall).

Support for Other Languages

ANEA uses Spacy for language preprocessing (tokenization and lemmatization). It currently supports English, German, French, Spanish, Portuguese, Italian, Dutch, Greek, Norwegian Bokmål and Lithuanian. For Estonian, EstNLTK, version 1.6, is supported by ANEA. In that case, ANEA needs to be installed with Python 3.6.

Text can also be preprocessed using external tools and then uploaded as whitespace tokenized text or in the CoNLL format (one token per line).

Other external preprocessing libraries can be added directly to ANEA by implementing a new Tokenizer class in autom_labeling_library/preprocessing.py (you can take a look at EstnltkTokenizer as an example) and adding it to the Preprocessing class. If you encounter any issues, just contact us.

Citation

If you use this tool, please cite us:

@article{hedderich21ANEA,
  author    = {Michael A. Hedderich and
               Lukas Lange and
               Dietrich Klakow},
  title     = {{ANEA:} Distant Supervision for Low-Resource Named Entity Recognition},
  journal   = {CoRR},
  volume    = {abs/2102.13129},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.13129},
  archivePrefix = {arXiv},
  eprint    = {2102.13129},
}

Development, Support & License

If you encounter any issues or problems when using ANEA, feel free to raise an issue on Github or contact us directly (mhedderich [at] lsv.uni-saarland [dot] de). We welcome contributes from other developers.

ANEA is licensed under the Apache License 2.0.

Owner
Saarland University Spoken Language Systems Group
Saarland University Spoken Language Systems Group
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021