Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

Related tags

Deep LearningCaGCN
Overview

CaGCN

This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration".

Paper Link: https://arxiv.org/abs/2109.14285

Environment

  • python == 3.8.8
  • pytorch == 1.8.1
  • dgl -cuda11.1 == 0.6.1
  • networkx == 2.5
  • numpy == 1.20.2

GPU: GeForce RTX 2080 Ti

CPU: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz

Confidence Calibration

CaGCN

python CaGCN.py --model GCN --hidden 64 --dataset dataset --labelrate labelrate --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
python CaGCN.py --model GAT --hidden 8 --dataset dataset --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
  • dataset: including [Cora, Citeseer, Pubmed], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3

For CoraFull,

python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate labelrate --stage 1 --lr_for_cal 0.01 --l2_for_cal 0.03
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 0.03
  • labelrate: including [20, 40, 60], required.

Uncalibrated model

python train_others.py --model GCN --hidden 64 --dataset dataset --labelrate labelrate --stage 1 
python train_others.py --model GAT --hidden 8 --dataset dataset --labelrate labelrate --stage 1 --dropout 0.6 --lr 0.005
  • dataset: including [Cora, Citeseer, Pubmed, CoraFull], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python train_others.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 1
python train_others.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --stage 1 --dropout 0.6 --lr 0.005

Temperature scaling & Matring Scaling

python train_others.py --model GCN --scaling_method method --hidden 64 --dataset dataset --labelrate labelrate --stage 1 --lr_for_cal 0.01 --max_iter 50
python train_others.py --model GAT --scaling_method method --hidden 8 --dataset dataset --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --max_iter 50
  • method: including [TS, MS], required.
  • dataset: including [Cora, Citeseer, Pubmed, CoraFull], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python train_others.py --model GCN --scaling_method TS --hidden 64 --dataset Cora --labelrate 20 --stage 1 --lr_for_cal 0.01 --max_iter 50
python train_others.py --model GAT --scaling_method TS --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --max_iter 50

Self-Training

GCN L/C=20

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 20 --stage 5 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.9
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 20 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 20 --stage 4 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.85

GCN L/C=40

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 40 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 40 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.85
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 40 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 40 --stage 4 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.99

GCN L/C=60

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 60 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 60 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 60 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.6
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 60 --stage 5 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.9

GAT L/C=20

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 20 --dropout 0.6 --lr 0.005 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.7
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 20 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 20 --dropout 0.6 --lr 0.005 --stage 5 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

GAT L/C=40

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 40 --dropout 0.6 --lr 0.005 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.9
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 40 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 40 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 40 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

GAT L/C=60

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 60 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 60 --dropout 0.6 --lr 0.005 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 60 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.85 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 60 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

More Parameters

For more parameters of baselines, please refer to the Parameter.md

Contact

If you have any questions, please feel free to contact me with [email protected]

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022