Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

Related tags

Deep LearningCaGCN
Overview

CaGCN

This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration".

Paper Link: https://arxiv.org/abs/2109.14285

Environment

  • python == 3.8.8
  • pytorch == 1.8.1
  • dgl -cuda11.1 == 0.6.1
  • networkx == 2.5
  • numpy == 1.20.2

GPU: GeForce RTX 2080 Ti

CPU: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz

Confidence Calibration

CaGCN

python CaGCN.py --model GCN --hidden 64 --dataset dataset --labelrate labelrate --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
python CaGCN.py --model GAT --hidden 8 --dataset dataset --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
  • dataset: including [Cora, Citeseer, Pubmed], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3

For CoraFull,

python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate labelrate --stage 1 --lr_for_cal 0.01 --l2_for_cal 0.03
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 0.03
  • labelrate: including [20, 40, 60], required.

Uncalibrated model

python train_others.py --model GCN --hidden 64 --dataset dataset --labelrate labelrate --stage 1 
python train_others.py --model GAT --hidden 8 --dataset dataset --labelrate labelrate --stage 1 --dropout 0.6 --lr 0.005
  • dataset: including [Cora, Citeseer, Pubmed, CoraFull], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python train_others.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 1
python train_others.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --stage 1 --dropout 0.6 --lr 0.005

Temperature scaling & Matring Scaling

python train_others.py --model GCN --scaling_method method --hidden 64 --dataset dataset --labelrate labelrate --stage 1 --lr_for_cal 0.01 --max_iter 50
python train_others.py --model GAT --scaling_method method --hidden 8 --dataset dataset --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --max_iter 50
  • method: including [TS, MS], required.
  • dataset: including [Cora, Citeseer, Pubmed, CoraFull], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python train_others.py --model GCN --scaling_method TS --hidden 64 --dataset Cora --labelrate 20 --stage 1 --lr_for_cal 0.01 --max_iter 50
python train_others.py --model GAT --scaling_method TS --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --max_iter 50

Self-Training

GCN L/C=20

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 20 --stage 5 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.9
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 20 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 20 --stage 4 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.85

GCN L/C=40

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 40 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 40 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.85
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 40 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 40 --stage 4 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.99

GCN L/C=60

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 60 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 60 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 60 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.6
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 60 --stage 5 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.9

GAT L/C=20

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 20 --dropout 0.6 --lr 0.005 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.7
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 20 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 20 --dropout 0.6 --lr 0.005 --stage 5 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

GAT L/C=40

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 40 --dropout 0.6 --lr 0.005 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.9
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 40 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 40 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 40 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

GAT L/C=60

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 60 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 60 --dropout 0.6 --lr 0.005 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 60 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.85 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 60 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

More Parameters

For more parameters of baselines, please refer to the Parameter.md

Contact

If you have any questions, please feel free to contact me with [email protected]

A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022