Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Overview

Speech Emotion Analyzer

  • The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have with each other all the time. Nowadays personalization is something that is needed in all the things we experience everyday.

  • So why not have a emotion detector that will guage your emotions and in the future recommend you different things based on your mood. This can be used by multiple industries to offer different services like marketing company suggesting you to buy products based on your emotions, automotive industry can detect the persons emotions and adjust the speed of autonomous cars as required to avoid any collisions etc.

Analyzing audio signals

©Fabien_Ringeval_PhD_Thesis.

Datasets:

Made use of two different datasets:

  1. RAVDESS. This dataset includes around 1500 audio file input from 24 different actors. 12 male and 12 female where these actors record short audios in 8 different emotions i.e 1 = neutral, 2 = calm, 3 = happy, 4 = sad, 5 = angry, 6 = fearful, 7 = disgust, 8 = surprised.
    Each audio file is named in such a way that the 7th character is consistent with the different emotions that they represent.

  2. SAVEE. This dataset contains around 500 audio files recorded by 4 different male actors. The first two characters of the file name correspond to the different emotions that the potray.

Audio files:

Tested out the audio files by plotting out the waveform and a spectrogram to see the sample audio files.
Waveform

Spectrogram

Feature Extraction

The next step involves extracting the features from the audio files which will help our model learn between these audio files. For feature extraction we make use of the LibROSA library in python which is one of the libraries used for audio analysis.

  • Here there are some things to note. While extracting the features, all the audio files have been timed for 3 seconds to get equal number of features.
  • The sampling rate of each file is doubled keeping sampling frequency constant to get more features which will help classify the audio file when the size of dataset is small.

The extracted features looks as follows



These are array of values with lables appended to them.

Building Models

Since the project is a classification problem, Convolution Neural Network seems the obivious choice. We also built Multilayer perceptrons and Long Short Term Memory models but they under-performed with very low accuracies which couldn't pass the test while predicting the right emotions.

Building and tuning a model is a very time consuming process. The idea is to always start small without adding too many layers just for the sake of making it complex. After testing out with layers, the model which gave the max validation accuracy against test data was little more than 70%


Predictions

After tuning the model, tested it out by predicting the emotions for the test data. For a model with the given accuracy these are a sample of the actual vs predicted values.


Testing out with live voices.

In order to test out our model on voices that were completely different than what we have in our training and test data, we recorded our own voices with dfferent emotions and predicted the outcomes. You can see the results below: The audio contained a male voice which said "This coffee sucks" in a angry tone.



As you can see that the model has predicted the male voice and emotion very accurately in the image above.

NOTE: If you are using the model directly and want to decode the output ranging from 0 to 9 then the following list will help you.

0 - female_angry
1 - female_calm
2 - female_fearful
3 - female_happy
4 - female_sad
5 - male_angry
6 - male_calm
7 - male_fearful
8 - male_happy
9 - male_sad

Conclusion

Building the model was a challenging task as it involved lot of trail and error methods, tuning etc. The model is very well trained to distinguish between male and female voices and it distinguishes with 100% accuracy. The model was tuned to detect emotions with more than 70% accuracy. Accuracy can be increased by including more audio files for training.

Owner
Mitesh Puthran
Data Scientist trying to make sense.
Mitesh Puthran
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022