pytorch bert intent classification and slot filling

Overview

pytorch_bert_intent_classification_and_slot_filling

基于pytorch的中文意图识别和槽位填充

说明

基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依赖:

pytorch==1.6+
transformers==4.x+

运行指令:

python main.py

可在config.py里面修改相关的参数,训练、验证、测试、还有预测。

结果

意图识别:
accuracy:0.9767441860465116
precision:0.9767441860465116
recall:0.9767441860465116
f1:0.9767441860465116
              precision    recall  f1-score   support

           0       1.00      0.94      0.97        16
           2       1.00      1.00      1.00         1
           3       1.00      1.00      1.00         4
           4       1.00      1.00      1.00        16
           5       0.00      0.00      0.00         1
           6       1.00      1.00      1.00        22
           7       0.84      0.89      0.86        18
           8       0.98      0.95      0.96        57
           9       1.00      1.00      1.00         2
          10       0.00      0.00      0.00         0
          11       0.00      0.00      0.00         1
          12       0.98      0.99      0.99       327
          13       1.00      1.00      1.00         1
          14       1.00      1.00      1.00         3
          15       1.00      1.00      1.00         1
          17       1.00      1.00      1.00         4
          18       1.00      0.80      0.89         5
          19       1.00      1.00      1.00        14
          21       0.00      0.00      0.00         1
          22       1.00      1.00      1.00        13
          23       1.00      1.00      1.00         9

    accuracy                           0.98       516
   macro avg       0.80      0.79      0.79       516
weighted avg       0.97      0.98      0.97       516

槽位填充:
accuracy:0.9366942909760589
precision:0.8052708638360175
recall:0.8461538461538461
f1:0.8252063015753938
                   precision    recall  f1-score   support

             Dest       1.00      1.00      1.00         7
              Src       1.00      0.86      0.92         7
             area       1.00      0.25      0.40         4
           artist       0.89      1.00      0.94         8
       artistRole       1.00      1.00      1.00         2
           author       1.00      1.00      1.00        13
         category       0.73      0.90      0.81        42
             code       0.71      0.83      0.77         6
          content       0.89      0.94      0.91        17
    datetime_date       0.72      0.95      0.82        19
    datetime_time       0.58      0.64      0.61        11
         dishName       0.84      0.88      0.86        74
        dishNamet       0.00      0.00      0.00         1
          dynasty       1.00      1.00      1.00        11
      endLoc_area       0.00      0.00      0.00         2
      endLoc_city       0.96      1.00      0.98        43
       endLoc_poi       0.62      0.73      0.67        11
  endLoc_province       0.00      0.00      0.00         1
          episode       1.00      1.00      1.00         1
             film       0.00      0.00      0.00         1
       ingredient       0.53      0.62      0.57        16
          keyword       0.88      0.88      0.88        25
    location_area       0.00      0.00      0.00         2
    location_city       0.40      1.00      0.57         4
     location_poi       0.36      0.57      0.44         7
location_province       0.00      0.00      0.00         3
             name       0.80      0.88      0.84       182
       popularity       0.00      0.00      0.00         5
       queryField       1.00      1.00      1.00         2
     questionWord       0.00      0.00      0.00         1
         receiver       1.00      1.00      1.00         4
         relIssue       0.00      0.00      0.00         1
       scoreDescr       0.00      0.00      0.00         1
             song       0.86      0.80      0.83        15
   startDate_date       0.93      0.93      0.93        15
   startDate_time       0.00      0.00      0.00         1
    startLoc_area       0.00      0.00      0.00         1
    startLoc_city       0.95      0.97      0.96        38
     startLoc_poi       0.00      0.00      0.00         1
         subfocus       0.00      0.00      0.00         1
              tag       0.40      0.40      0.40         5
           target       1.00      1.00      1.00        12
     teleOperator       0.00      0.00      0.00         1
          theatre       0.50      0.50      0.50         2
        timeDescr       0.00      0.00      0.00         2
        tvchannel       0.74      0.81      0.77        21
        yesterday       0.00      0.00      0.00         1

        micro avg       0.81      0.85      0.83       650
        macro avg       0.52      0.54      0.52       650
     weighted avg       0.79      0.85      0.81       650

=================================
打开相机这
意图: LAUNCH
槽位: [('name', '相', 2, 2)]
=================================
=================================
国际象棋开局
意图: QUERY
槽位: [('name', '国际象棋', 0, 3)]
=================================
=================================
打开淘宝购物
意图: LAUNCH
槽位: [('name', '淘宝', 2, 3)]
=================================
=================================
搜狗
意图: LAUNCH
槽位: []
=================================
=================================
打开uc浏览器
意图: LAUNCH
槽位: [('name', 'uc浏', 2, 4)]
=================================
=================================
帮我打开人人
意图: LAUNCH
槽位: []
=================================
=================================
打开酷狗并随机播放
意图: LAUNCH
槽位: [('name', '酷狗', 2, 3)]
=================================
=================================
赶集
意图: LAUNCH
槽位: []
=================================
=================================
从合肥到上海可以到哪坐车?
意图: QUERY
槽位: [('Src', '合肥', 1, 2), ('Dest', '上海', 4, 5)]
=================================
=================================
从台州到金华的汽车。
意图: QUERY
槽位: [('Src', '台州', 1, 2), ('Dest', '金华', 4, 5)]
=================================
=================================
从西安到石嘴山的汽车票。
意图: QUERY
槽位: [('Src', '西安', 1, 2), ('Dest', '石嘴山', 4, 6)]
=================================
Owner
西西嘛呦
西西嘛呦
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022