PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

Overview

FKD: A Fast Knowledge Distillation Framework for Visual Recognition

Official PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition. Zhiqiang Shen and Eric Xing from CMU and MUZUAI.

Abstract

Knowledge Distillation (KD) has been recognized as a useful tool in many visual tasks, such as the supervised classification and self-supervised representation learning, while the main drawback of a vanilla KD framework lies in its mechanism that most of the computational overhead is consumed on forwarding through the giant teacher networks, which makes the whole learning procedure in a low-efficient and costly manner. In this work, we propose a Fast Knowledge Distillation (FKD) framework that simulates the distillation training phase and generates soft labels following the multi-crop KD procedure, meanwhile enjoying the faster training speed than ReLabel as we have no post-processes like RoI align and softmax operations. Our FKD is even more efficient than the conventional classification framework when employing multi-crop in the same image for data loading. We achieve 79.8% using ResNet-50 on ImageNet-1K, outperforming ReLabel by ~1.0% while being faster. We also demonstrate the efficiency advantage of FKD on the self-supervised learning task.

Supervised Training

Preparation

FKD Training on CNNs

To train a model, run train_FKD.py with the desired model architecture and the path to the soft label and ImageNet dataset:

python train_FKD.py -a resnet50 --lr 0.1 --num_crops 4 -b 1024 --cos --softlabel_path [soft label path] [imagenet-folder with train and val folders]

For --softlabel_path, simply use format as ./FKD_soft_label_500_crops_marginal_smoothing_k_5

Multi-processing distributed training is supported, please refer to official PyTorch ImageNet training code for details.

Evaluation

python train_FKD.py -a resnet50 -e --resume [model path] [imagenet-folder with train and val folders]

Trained Models

Model accuracy (Top-1) weights configurations
ReLabel ResNet-50 78.9 -- --
FKD ResNet-50 79.8 link Table 10 in paper
ReLabel ResNet-101 80.7 -- --
FKD ResNet-101 81.7 link Table 10 in paper

FKD Training on ViT/DeiT and SReT

To train a ViT model, run train_ViT_FKD.py with the desired model architecture and the path to the soft label and ImageNet dataset:

cd train_ViT
python train_ViT_FKD.py -a SReT_LT --lr 0.002 --wd 0.05 --num_crops 4 -b 1024 --cos --softlabel_path [soft label path] [imagenet-folder with train and val folders]

For the instructions of SReT_LT model, please refer to SReT for details.

Evaluation

python train_ViT_FKD.py -a SReT_LT -e --resume [model path] [imagenet-folder with train and val folders]

Trained Models

Model FLOPs #params accuracy (Top-1) weights configurations
DeiT-T-distill 1.3B 5.7M 74.5 -- --
FKD ViT/DeiT-T 1.3B 5.7M 75.2 link Table 11 in paper
SReT-LT-distill 1.2B 5.0M 77.7 -- --
FKD SReT-LT 1.2B 5.0M 78.7 link Table 11 in paper

Fast MEAL V2

Please see MEAL V2 for the instructions to run FKD with MEAL V2.

Self-supervised Representation Learning Using FKD

Please see FKD-SSL for the instructions to run FKD code for SSL task.

Citation

@article{shen2021afast,
      title={A Fast Knowledge Distillation Framework for Visual Recognition}, 
      author={Zhiqiang Shen and Eric Xing},
      year={2021},
      journal={arXiv preprint arXiv:2112.01528}
}

Contact

Zhiqiang Shen (zhiqians at andrew.cmu.edu or zhiqiangshen0214 at gmail.com)

Owner
Zhiqiang Shen
Zhiqiang Shen
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022